Przetwarzanie obrazów

Zajęcia 10 Filtracje przestrzenne obrazów rastrowych.

2006-12-12 13:44:21

Zasady wykonania ćwiczenia

- Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników zapisujemy w pliku NazwiskoNR.doc, według wskazówek schematów zawartych w ćwiczeniu
- NIE UMIESZCZAĆ SPACJI I POLSKICH ZNAKÓW W NAZWACH PLIKÓW (geoinfo posiada w2k)
- Po zajęciach ładujemy pliki z wynikami i komentarzem na serwer przez stronę <u>http://www.geoinfo.amu.edu.pl/geoinf</u>
- 1) Logujemy się, 2) wybieramy plik do upload'u, 3) Ładujemy,
- 4) powtarzamy te czynność odpowiednią ilość razy 5) sprawdzamy zawartość katalogu ćwiczenia nr....*
- Jeżeli ktoś jest nieobecny na ćwiczeniach to wykonuje ćwiczenie samodzielnie w domu. Opisy do ćwiczeń dostępne są w Internecie pod adresem <u>http://ztg.amu.edu.pl/zajecia.htm</u>, dalej należy wybrac odpowiedni przedmiot
- * Jak ten sposób nie będzie działał, to wówczas to proszę wysłać poczta (lotniczą [©]) na adres: skrol@amu.edu.pl

Uwagi ogólne

- Celem ćwiczenia jest zapoznanie się z zasadami wykonywania i działania filtracji przestrzennych oraz ich najbardziej typowymi zastosowaniami
- Filtracje są wykorzystywanie do redukcji szumów, wyostrzania szczegółów lub przeciwnie do redukcji kontrastu – wygładzania obrazu, podkreślania krawędzi, analizy tekstury obrazu, itp.

Filtracje przestrzenne...

Są operacją obliczeniową o charakterze lokalnym, tzn. nowa wartość piksela (jasność, jaskrawość, barwa) jest obliczana na podstawie wartości pikseli sąsiednich. Rozmiar i kształt rastra, czyli ilość kolumn i wierszy pozostaje nie zmieniona.

Mechanizm Filtracji

Podstawą filtracji jest maska (nazywana również oknem filtru lub jądrem filtru, ang. focus, kernel). Maska:

- określa zasięg sąsiedztwa, w ramach którego jest obliczana nowa wartość piksela;
- zawiera wagi-współczynniki, stanowiące o wpływie poszczególnych pikseli na obliczaną nową wartość.

Nowa wartość piksela w czasie filtracji jest obliczana w oparciu o zbiór pikseli, wyznaczony przez maskę, z wykorzystaniem określonej miary statystycznej (średniej, odchylenia standardowego, mediany, mody itd.). Filtracji nie podlegają piksele brzegowe. Piksele brzegowe to takie, które biorą udział w obliczeniach jako zawierające się w masce, ale wartość początkowa tych pikseli nie ulega zmianie. Wymiar macierzy rastrowej przed i po filtracji musi być taki sam, dlatego "brzeg" (wartości pikseli do niego należących) jest przenoszony do rastra wynikowego.

	Y	Pierwsza pozycja maski																							
	Ō	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
X 0	1	2	5	9	6	4	6	4	9	6	4	2	1	7	4	2	8	9	5	3	4	5	6	7	
1	1	5	0	1	8	0	1	4	4	5	8	7	7	7	7	7	7	7	7	7	7	7	€	7	
2	3	2	7	4	6	2	0	9	6	7	2	3	9	8	2	7	8	7	3	6	З	9	8	7	
3	5	3	8	7	6	5	3	1	8	9	8	5	8	7	3	4	5	6	3	9	8	8	0	9	
4	8	7	4	3	6	5	2	4	8	7	1	3	4	7	1	3	5	5	2	8	5	4	6	6	
5	1	3	9	8	5	6	1	3	5	4	2	8	4	7	3	2	0	4	7	3	6	4	2	5	
6	1	2	5	9	6	4	6	4	9	6	4	2	1	7	4	2	8	9	5	3	4	5	6	7	
7	1	5	6	1	8	0	1	4	4	5	6	7	7	7	7	7	7	7	7	7	7	7	6	7	
8	3	2	7	4	6	2	0	9	6	7	2	3	9	8	2	7	8	7	3	6	3	9	8	7	
9	5	3	8	7	6	5	3	1	8	9	8	5	8	7	3	4	5	6	3	9	8	8	0	9	
10	8	7	4 _b	Piks Ized	ele owe	5	2	4	8	7	1	3	4	7	1	3	5	5	2	8	5	4	6	6	
11	1	3	9	8	5	6	1	3	5	4	2	8	4	7	3	2	0	4	7	3	6	4	2	5	
12	1	2	5	9	6	4	6	4	9	6	4	2	1	7	4	2	8	9	5	3	4	5	6	7	
13	1	5	6	1	8	0	1	4	4	5	6	7	7	7	7	7	7	7	7	7	7	7	6	7	
14	3	2	7	4	6	2	0	9	6	7	2	3	9	8	2	7	8	7	3	6	3	9	8	7	
15	5	3	8	7	6	5	3	1	8	9	8	5	8	7	3	4	5	6	3	9	8	8	0	9	
16	8	7	4	3	6	5	2	4	8	7	1	3			l a		-	- cki			Б	4	6	6	
17	1	3	9	8	5	6	1	3	5	4	2	8	4	statr	1 a p	2		5KI 4	7	3	6	4	2	5	
17	 P	rzy	9 vkła	adc	b We	6 9 W	sp [.]	0 ółr.	ے zęc	4 dne	2 > pi	iks	ela		<u>3</u> [X, y	2 y,Z]	0 =	4 {16	6,2	3,6	6 5}	4	2	5	

Szum na obrazie – zakłócenie powstałe w trakcie rejestracji obrazu cyfrowego

Wysoka częstotliwość jest związana ze częstymi zmianami jasności na krótkim odcinku, niska – ze zmianami jasności na dłuższych odcinkach.

Krawędź na obrazie rastrowym rozumiana jest jako duża różnica jasności między sąsiednimi pikselami.

Wysoka częstotliwość - niska częstotliwość

Dane do ćwiczenia

- Dat_01 pierwszy kanał Landsat'a, obraz rejestrowany w zakresie niebieskim, obarczony dużym zamgleniem, wynikającym z intensywnego rozpraszania światła w tej długości fali, rozdzielczość naziemna 30 m;
- Dat_04 kanał czwarty Landsat'a, wykonany w podczerwieni, prawie pozbawiony wpływu promieniowania rozproszonego, rozdzielczość naziemna 30 m;
- ASTER_Dat_01 pierwszy kanał o rozdzielczości 15 m, dane nie skorygowane ze względu na zakłócenia pracy poszczególnych elementów sensora rejestrującego obraz, obecność zakłóceń pasowych;
- tekst fragment skanu tabeli danych meteorologicznych ze starych roczników, nie równomierny druk, zabrudzenia papieru; przygotowanie tego obrazu do OCR

Zadania (1)

- Wykonać wyostrzanie w celu poprawy ogólnego kontrastu obrazu (filtrami high boot i high pass) pierwszego kanału pierwszego kanału Landsat'a Dat_01 przy wielkości maski 3 x3, 5 x 5, 7 x7; wynikiem tego zadania będzie sześć obrazów zapisanych w pliku wynikowym nazwisko10A.rvc, do nazwy podstawowej kanału dodawać liczbę porządkową a w opisie zaznaczyć rodzaj filtru oraz wielkość maski np., Dat_01_1 high boost 3x3;
- Raster/Filter/Spatial Filters
- Wykonać filtracje obiektu Dat_04 w oparciu o filtr modalny, medianowy i low pass przy wielkości maski 3 x3, 5 x 5, 7 x7 (pod kątem klasyfikacji treści, chodzi ujednolicenie jasności w ramach poszczególnych kategorii użytkowania powierzchni); wynikiem tego zadania będzie dziewięć obrazów zapisanych w pliku wynikowym nazwisko10B.rvc, do nazwy podstawowej kanału dodawać liczbę porządkową a w opisie zaznaczyć rodzaj filtru oraz wielkość maski np., Dat_04_1 low pass 3x3;
- Raster/Filter/Spatial Filters
- Wykonać wyostrzanie obiektu tekst zeskanowanego tekstu (złej jakości) w celu usunięcia brudów, celem ostatecznym jest doprowadzenie do obrazu binarnego (sugerowane podejście do problemu powinno mieć charakter iteracyjny); problemem w tym wypadku będzie dobór odpowiedniego rozmiaru maski; po filtracji wykonać progowanie tekstu; wyniki kolejnych filtracji wybranym filtrem i progrowania zapisać w pliku nazwisko10C.rvc;
- Raster/Filter/Spatial Filters
- Raster/Combine/Predefined

Zadania (2)

- Usunięcie zakłóceń pasowych z obrazu pierwszego kanału obrazu ASTER, poprzez testowanie wszystkich filtrów z grupy Remove Noise (usuwanie zakłóceń), wynik – najlepszy uzyskany wynik zapisać w pliku nazwisko9B.rvc;
- Raster/Filter/Spatial Filters
- Na podstawie uzyskanych obrazów wynikowych zapisać w pliku tekstowym nazwisko10.doc wnioski dotyczące efektów zastosowania poszczególnych filtrów, relacji rozdzielczości rzeczywistej i treści obrazu do wielkości maski filtru.
- Działania na module filtracji, obejmujące wprowadzenie danych obrazowych, testowanie filtracji, zmianę typów i grup ilustruje film cpo19.avi.

Literatura obowiązkowa – seria Getting Started

http://www.microimages.com/getstart/pdf/filter.pdf

Literatura dla zainteresowanych