Przetwarzanie obrazów

Zajęcia 11

Filtracje przestrzenne obrazów rastrowych (2).

Zasady wykonania ćwiczenia

- Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników zapisujemy w pliku NazwiskoNR.doc, według wskazówek schematów zawartych w ćwiczeniu
- NIE UMIESZCZAĆ SPACJI I POLSKICH ZNAKÓW W NAZWACH PLIKÓW (geoinfo posiada w2k)
- Po zajęciach ładujemy pliki z wynikami i komentarzem na serwer przez stronę <u>http://www.geoinfo.amu.edu.pl/geoinf</u>
- 1) Logujemy się, 2) wybieramy plik do upload'u, 3) Ładujemy,
- 4) powtarzamy te czynność odpowiednią ilość razy 5) sprawdzamy zawartość katalogu ćwiczenia nr....*
- Jeżeli ktoś jest nieobecny na ćwiczeniach to wykonuje ćwiczenie samodzielnie w domu. Opisy do ćwiczeń dostępne są w Internecie pod adresem <u>http://ztg.amu.edu.pl/zajecia.htm</u>, dalej należy wybrac odpowiedni przedmiot
- * Jak ten sposób nie będzie działał, to wówczas to proszę wysłać poczta (lotniczą [©]) na adres: skrol@amu.edu.pl

Uwagi ogólne

Celem ćwiczenia jest:

- zapoznanie się z różnymi modyfikacjami podstawowych masek filtrów, np. lowpass (dolnoprzepustowego),
- Poznaniem różnych parametrów, kóre dostępne są w procesie filtracji przestrzenych
- definiowaniem własnych filtrów w standardowy sposób (w procesie Spatial Filters),
- zastosowaniem języka skryptowego SML do tworzenia własnych skryptów, w tym filtrów złożonych z kilku masek

Adresowanie elementów maski filtru w rozmiarze 3x3 i 5x5

Pozycja piksela w masce, przy nieparzystym wymiarze, odniesiona może być jest do piksela środkowego o współrzędnych [i,j] – [wiersz, kolumna]

i-1, j-1	i-1, j	i-1, j+1	
i, j-1	i, j	i, j+1	
i+1, j-1	i+1, j	i+1, j+1	

i-2, j-2	i-2, j-1	i-2, j	i-2, j+1	i-2, j+2
i-1, j-2	i-1, j-1	i-1, j	i-1, j+1	i-1, j+2
i, j-2	i, j-1	i, j	i, j+1	i, j+2
i+1, j-2	i+1, j-1	i+1, j	i+1, j+1	i+1, j+2
i+2, j-2	i+2, j-1	i+2, j	i+2, j+1	i+2, j+2

Definiowanie filtru w procesie Spatial Filter

📼 Raster Spatial Filtering						
Fitter Size						
Open 🔷 Gray Scale 💠 RGB (Intensity) 🛛 Filler 🔷 All 🗸	🔷 Polygon					
Save As						
Tect						
Rn.						
Exit General I Type: Low Pass/Average I	Nowa maska filtru na bazie filtru					
Kernel Parameters Output	dolnoprzepustowego uśredniającego,					
Width: 3 Length: 3 🗖 Circular Kernel	poleceniem Save As zachowujemy maskę					
1 2 3 1	filtru w projekcie .rvc					
2 0.50 1.00 0.50 2						

Parametry filtrowania

Zmiana (poprawa wartości filtrowania)

Scale – skalowanie; Offset – przesunięcie, Boost – zwielokrotnienie; parametry te stosowane są zgodnie z formułą;

Modified Output = ((Initial Output * Boost) + Offset) / Scale

Wartość po filtracji

Progowanie przed i po filtracji określane jest poprzez podanie minimalnych i maksymalnych wartości zakresów branych pod uwagę. Jeśli jasność piksela na wejściu jest poza zdefiniowanym zakresem, wówczas taki piksele nie podlega procesowi filtracji. Z kolei na wyjściu, jeśli wartość piksela po filtracji jest poza zdefiniowanym zakresem to pikselowi przypisuje się odpowiednio maksimum lub minimum.

	# Focal Filter
Drzyddody okryptów CMI wydropyjooyob	clear();
Fizykłady skrypiów SiviL wykonujących	raster Rin, Rout;
#Fot flitrowanie pojedynczego obrazu z	GetInputRaster(Rin);
definiowaną samodzielnie maską	numeric lines = NumLins(Rin);
raster Rin, Rout	numeric columns = NumCols(Rin);
Gotton (Radio)	<pre>string type\$ = PastType(Rin);</pre>
$\frac{\partial (\operatorname{Bis})}{\partial (\operatorname{Bis})} = \operatorname{Muscl}(\operatorname{Dis});$	
maniens in - Namuns (Nin),	GetOutputRaster(Rout, lines, columns, type\$);
numenc coi = NumCois(Rin);	
stnng type\$ = RastType(Rin);	#tworzymy 3x3 dolnorzepustowy filtr uśrednający
	numeric dim=3;
GetOutputRaster(Rout, lines, columns, type\$);	array numeric f[dim,dim]; #all values are 0
	numenc r,c;
#tworzymy 3x3 dolnorzepustowy filtr uśrednający	for (r=1; r<=dim; r++)
numeric dim=3:	(A
array numeric fidim dim): # domyslnie wartości wag w masce wy	$r = 1, c = 1, c = arrit, c \rightarrow r$
numeric r.c.	$\frac{1}{\text{ffr} cl} = 1$
f(4, 4) = 4 f(4, 2) = 4 f(4, 3) = 4	1[1]0] — 1, 1
1[1,1]=1,1[1,2]=1,1[1,2]=1, 4[0,4]=4.4[0,0]=4.4[0,2]=4.	, ,
[[2, 1] = 1, [[2, 2] = 1, [[2, 0] = 1], [[2, 4] = 4, [[2, 0] = 4, [[2, 0] = 4].	#3x3 low pass ave filter
τ[δ, 1]=1,τ[δ, 2]=1,τ[δ, δ]=1;	#111
Rout=FocalFilter(Rin, f);	#111
CloseHaster(Rin);	#111
CloseRaster(Rout);	Rout=FocalFilter(Rin, f);
	CloseRaster(Rin);
	CloseRaster(Rout);

-

Filtr dolnoprzepustowy

Trzy różne maski filtru dolnoprzepustowego, A,B, C; maski B i C w efekcie końcowym mniej wygładzają –rozmywają - krawędzie. Inne przykłady filtrów uśredniających – wygładzających i wyostrzających - zawiera plik filtry_przestrzenne.rvc

Zadanie 1

1) Wykonać filtracje kanału czwartego zobrazowania Landsata Dat_04, trzema filtrami dolnoprzepustowymi omówionymi na poprzednim slajdzie definiując samodzielnie maski dla tych filtrów oraz wszystkimi filtrami zawartymi w pliku filtry_przestrzenne.rvc. Otwieranie nowej definicji filtru odbywa się poprzez Filter/Open. Wyniki filtracji zapisać w pliku nazwisko11A.rvc. Obiekty rastrowe – wyniki filtracji; do nazwy podstawowej dodać część nazwy filtru;

2) Po filtracji obejrzeć wszystkie wyniki, spróbować znaleźć teoretyczne zastosowania dla wykorzystanych filtrów. Swoje przemyślenia zawrzeć i zilustrować w dokumencie nazwisko11A.doc.

3) Wybrać sobie jeden z filtrów, zastosować dodatkowo podczas filtracji progowanie. Zastosować progowanie na trzy sposoby: z wykorzystaniem tylko górnego progu, tylko dolnego oraz obu progów na raz. Progi dobrać odpowiednio, mniej więcej w 1/3 i 2/3 wykorzystanego zakresu skali szarości. Efekty tak przeprowadzonych filtracji opisać i zilustrować w dokumencie nazwisko11B.doc. Wyniki, trzykrotnie przefiltrowany dat_04, zapisać w pliku nazwisko11B.rvc jako dat_04_upper, dat_04_low, dat_04_dualtreshold.

Zadania (2)

- Usunięcie zakłóceń pasowych z obrazu pierwszego kanału obrazu ASTER, poprzez testowanie wszystkich filtrów z grupy Remove Noise (usuwanie zakłóceń), wynik – najlepszy uzyskany wynik zapisać w pliku nazwisko11C.rvc; do nazwy obiektu dodawać nazwy wykorzystywanych filtrów;
- Process/Raster/Filter/Spatial Filters
- Na podstawie uzyskanych obrazów wynikowych zapisać w pliku tekstowym nazwisko11C.doc wnioski dotyczące efektów zastosowania poszczególnych filtrów, relacji rozdzielczości naziemnej do wielkości maski filtru.
- Działania na module filtracji, obejmujące wprowadzenie danych obrazowych, testowanie filtracji, zmianę typów i grup ilustruje flm cpo19.avi.

Literatura obowiązkowa – seria Getting Started

http://www.microimages.com/getstart/pdf/filter.pdf