Geoinformacja – Interpretacja danych teledetekcyjnych

A. Pozyskanie i przygotowanie danych

VIII. Pozyskanie danych wysokościowych (DEM)

- 1. Wchodzimy na stronę: http://srtm.csi.cgiar.org/
 - 2. Wybieramy "SRTM Data Search and Download"

(srtm.csi.cgiar.org	
CGIAR-CSI	oustainable Future
CGIAR-CSI Content	SRTM 90m Digital Elevation Data
• What is CGIAR-CSI ?	a a
CGIAR-CSI Members	
• What's New ?	
CRU Climate Data	
SRTM Content SRTM Data Search and Download SRTM Data Processing Methodology	
SRTM FAQ SRTM Quality Assessment (PDF File - 2.55 Mb)	
About SRTM Imagery	
CIAT Landuse Project	
How to Search for Data?	
• Disclaimer	Resampled SRTM data to 250m resolutions for the entire globe are available https://hc.box.net/sha
Contact Us	UPDATE - VERSION 4: THE SRTM DATA NOW AVAILABLE FROM THIS SITE HAS BEEN UPGRADED TO VERSION AUXILIARY DEMS. WE ARE CONFIDENT THIS IS NOW THE HIGHEST QUALITY SRTM DATASET AVAILABLE
GeoNetwork Project	The CGIAR-CSI GeoPortal is able to provide SRTM 90m Digital Elevation Data for the entire world. The SRTM digital elevation

Ściągnięty plik(i) rozpakowujemy do folderu "idt" (tego, w którym znajdują się zdjęcia landsata)

- Otwieramy rozpakowane pliki w ArcMapie (będą najprawdopodobniej całe szare, co wynika z niewłaściwego dopasowania kontrastu, ale nie przejmujemy się tym na razie)
- 2. Dokładamy wycięty wcześniej fragment Landsat'a
- 3. Sprawdzamy czy jest on zlokalizowany w obrębie DEM-u

1. Wybieramy polecenie z toolbox'a Data Management Tools/ Raster / Raster Processing / Clip

- 2. Jako "Input Raster" wskazujemy plik z modelem SRTM
- 3. Jako "Output Extenent" wskazujemy, któryś z **WYCIĘTYCH** kanałów Landsat
- 4. Jako "Output Raster Dataset" wpisujemy "dem.tif"

Input Raster					
Output Extent (ontional)					
kanal 7.tif					▼
, – Rectangle					
-	Y Maximum				
				51.963867	
	,				
X Minimum			X Maximum		
		18.597722			18.811611
	Y Minimum				
				51.831545	Clear
🔲 Use Input Features for Clipp	ing Geometry (optional)				
Output Raster Dataset					
F:\zajecia\zajecia_2011_2012	idt\dem.tif				
NoData Value (optional)					_

5. Klikamy ok – powinniśmy otrzymać wycięty fragment modelu wysokości, którego zasięg będzie się pokrywał z zasięgiem wyciętego obrazu landsata (ale rozmiar komórki będzie nadal

inny)

- 1. Importujemy wycięty DEM do TNTmips (analogicznie, jak w przypadku obrazów landsat). Tworzymy nowy plik projektu "srtm.rvc", a w nim nowy obiekt "dem_surowy"
- Sprawdzamy czy DEM nie posiada "dziur" wartości –32000. W tym celu otwieramy histogram DEM-u

Jeżeli nie ma wartości wysokości rzędu –32000 oznacza to, że wycięty fragment jest pozbawiony dziur. Wtedy przechodzimy do następnego kroku. Jeżeli byłyby "dziury" konieczna jest filtracja lub zastąpienie tych ujemnych wartości przez wartość "0" lub inną odpowiednią dla otaczającego terenu Dopasowanie rozmiaru komórki DEM (90 m) do rozmiarów komórki Landsaťa (28,5 lub 30 m):

- 1. Wybieramy polecenie: Resample and Reproject (Automatic)
- Wybieramy "Select Raster" i wskazujemy na plik, którego rozdzielczość chcemy zmienić (w naszym przypadku "dem_surowy")
- 3. Opcje (Settings) ustawiamy zgodnie z obrazkiem.
 - 1. Method: Nearest Neighbor
 - Extents: Match Reference (jako raster odniesienia wskazujemy zaimportowany, wycięty kanał Landsat'a)
 - 3. Scale: To Reference
 - 4. Orient To Reference
- Klikamy Run. Jako plik wynikowy tworzymy nowy obiekt "dem_res". powinniśmy otrzymać raster, który będzie idealnie dopasowany do obrazu Landsat
- Wyświetlamy utworzony obiekt i sprawdzamy czy rozmiar komórki i liczba kolumn i wierszy zgadza się z obrazami Landsat

Raster Resampling using Geore	ference (1508)				
Rasters Settings						
Model From Georeference 💌	Scale	To Reference 💌				
Method Nearest Neighbor 💌	Orient	To Reference 💌				
Extents Match Reference	Pyrami	d Automatic 💌	×			
Reference Raster aa.rvc / ka	nal_7					
Reference System From refere	nce					
Cell Size (meters)		Raster Size				
Line	28.5	Lines	501			
Column	28.5	Columns	501			
Extents-						
Coordinates WGS84 / UTM z	one 34N	(CM 21E)				
Easting		to				
Northing		to				
Greoid Height 🖉 Reverse Polynomial Warping						
Run Queue Job	Save	Job Exit H	Help			

- 1. Po zwiększeniu rozdzielczości należy dokonać filtracji wygładzającej w celu usuniecia ewentualnych artefaktów
- TNTmips Free 2011 Main Image Geometric Terrain Convert Script Tools Help Extract.. Auto Mosaic.. Raster Spatial Filtering (1816) Manual Mosaic... Filter Size Hyperspectral.. Photogrammetric Modeling. Rasters. А Resample and Reproject aaa/dem res Filter Spatial Filter.. Combine Frequency Filter.. Internret Class: General Parameters Kernel Width: 3 1.00 1.00 1.00 TNTmips Free 2011 Image Geometric Terrain Convert Script Tools Extract. Auto Mosaic. Manual Mosaic.. Hyperspectral. Photogrammetric Modeling.. Resample and Reproiect Raster Combination (1016) Filter Combine Type Algebraic Operation Subtract Automatic Interpret Predefined...

Jser-Defined Linear.

Decorrelation

Aultilinear Regression. Principal Components..

Utilities

- 2. Używamy filtru dolnoprzepustowego lub medianowego o wymiarze okna max 3 x 3 piksele
- 3. Dem po filtracji zapisujemy jako "dem filt"
- 4. W celu oceny wpływu filtracji na dane wysokościowe wykonujemy działanie "dem res" -"dem filt", wynik zapisujemy jako "dem diff"
- 5. Analizujemy otrzymany obraz (gdzie wygładzanie miało największy wpływ, dlaczego itp.). Wnioski i opis dołaczamy do raportu

Przygotowanie modelu zacienienia:

- 1. Wybieramy opcję "topographic properties"
- Jako wejściowy model terenu wskazujemy plik po filtracji "dem_filt"

3. Zaznaczmy opcję "Shading" (w celu obliczenia modelu zacienienia)

- "Elevation angle of the sun" oraz "Direction of the sun" wpisujemy na podstawie wypełnionego formularza projektu (czyli na podstawie metadanych). "Direction of the sun" to inaczej "sun azimuth"
- 5. Kilkamy "run". Wynikowy plika zapisujemy jako obiekt o nazwie "shading"

	📕 Curvature	32-bit	floati
	Pyramid Avera	age 💌	Co

Main	Image	Geometric	Terrain	Convert	Script
			Surface	Modeling	
			Topogra	phic Proper	ties

Topographic Properties (1180)					_ 🗆 ×	
Raster aa.rvc / dem_filt							
Surface-fitting method for 3	°3 Window						
Exact fit to 4 nearest neigh	bors and center cell		_				
Output raster information							
Slope 8-bit unsig	ned integer 🗾 Degre	es 🔻					
Aspect 16-bit sign	ed integer 💌						
📕 Shading 8-bit unsig	ned integer 🗾 Metho	d High	-Contrast 💌				
Curvature 32-bit float	ing-point 💌 💷 Profile	e 🖬 P	lan Radians	:/Meter 💌			
Pyramid Average 💌 Co	ompression Uncompres	sed	•				
Parameters-				e Calculator—			
Horizontal Cell Size	28.5	m	Latitude		N 0 00 00.000	0	
Vertical Cell Size	28.5	m	Longitude		E 0 00 00.000		
Scale for elevation	1.0000		Day 1	Month 1	Year 1901		
Elevation angle of the sun	50.0	deg	Hour 0	Minute 0	UTC		
Direction of the sun	0.0	deg	Calculate				
Run	Queue Job	Save	Job	Exit	Help	X	

Na tym kończy się etap przygotowania danych

Geoinformacja – Interpretacja danych teledetekcyjnych

B. Korekta obrazów satelitarnych

XI. Konwersja obrazów Landsat z DN do SRFI

- Po zapoznaniu się z dokumentacją wykonujemy skrypt srfi.sml (Uruchamiamy go z menu "script" w wersji TNTmips 2008:74. W nowszych wersjach nie ma możliwości używania skryptów!
- 2. Na podstawie dokumentacji i metadacnych podajemy informacje, których żąda od nas skrypt przy uruchomieniu:
 - Wybieramy rodzaj Landsata, z którego mamy zdjęcia (TM lub ETM+)
 - 2. Wypełniamy datę pozyskania i produkcji, azymut i wysokość słońca nad horyzontem na podstawie metadanych
 - Przyjmujemy domyślne parametry wejściowe pełną korektę wpływu atmosfery – (full atmospheric correction) – opcja 3
 - Podajemy odpowiednie kanały wejściowe: BL kanał 1; GL- kanał 2; RL-kanał 3; NA-kanał 4; MB-kanał 5; MC-

kanał 7

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM): <u>6 shortwave MS bands</u>: BL, GL, RL, NA, MB, and MC. The TM and ETM band numbering scheme³ is 1, 2, 3, 4, 5, and 7. TM6 and ETM6 are TA bands that have a much lower spatial resolution.

3. Wynikowe kanały zapisujemy w nowym pliku projektu "srfi.rvc" dla lepszej orientacji nazywamy kanały zgodnie ze schematem "srfi_BL", "srfi_GL", "srfi_RL" itp..

XII. Korekcja wpływu rzeźby terenu

- Po zapoznaniu się z dokumentacją wykonujemy skrypt tercor.sml
- Potrzebne informacje podajemy zgodnie z dokumentacją i metadanymi
- Jako warstwy wejściowe wskazujemy pliki uzyskane dzięki skryptowi "srfi", a więc odpowiednio: "srfi_BL", "srfi_GL", "srfi_RL" itp..
- Jako model zacienienia wskazujemy obliczony wcześniej plik "shading"
- Pliki wyjściowe zapisujemy w nowym pliku projektu "tercor.rvc". Obiekty nazywamy zgodnie z kluczem: "tercor_BL", "tercor_GL", "tercor_RL" itp..