Geoinformacja – Interpretacja danych teledetekcyjnych

XIII. Obliczenie indeksu wegetacji NDVI

Wprowadzenie

Wzmocnienia spektralne obrazu satelitarnego

- Zamiana jasności piksela w danym kanale w oparciu o jasności tego samego piksela zarejestrowane w innych kanałach
- Celem jest uwypuklenie tych zależności pomiędzy kanałami spektralnymi, które są istotne dla danego obiektu

• Wagowanie

- podzielenie wartości jasności danego piksela zarejestrowanego w jednym kanale przez wartość jasności tego samego piksela w innym kanale
- Podkreślenie różnic w intensywności odbicia promieniowania przez pewne obiekty
- Usuwanie różnic wynikających ze zmian odbicia promieniowania spowodowanych rzeźbą terenu

Dla poprawy możliwości analizy obrazów cyfrowych wykorzystuje się szereg indeksów, które tworzone są w oparciu o wspomniane wyżej metody. Jednym z takich indeksów jest tzn. NDVI (Normalized Difference Vegetation Index) czyli "Znormalizowany Indeks wegetacji" (lub "Znormalizowany różnicowy Indeks wegetacji"

NDVI

 NDVI bazuje na kontraście między największym odbiciem w paśmie NIR i największej absorpcji w paśmie RED. W klasycznej postaci oblicza się go na podstawie wzoru:

NDVI = (NIR-RED) / (NIR + RED)

Gdzie: NIR – bliska podczerwień RED – czerwień

Czyli dla surowego Landsata:

NDVI = (kanał 4 - kanał 3) / (kanał 4 + kanał 3)

A dla rastrów po skrypcie SRFI:

NDVI = (NA - RL) / (NA + RL)

NDVI (2)

- W klasycznej postaci wskaźnik NDVI ten przyjmuje wartości w zakresie < -1, 1 >. Wartości w okolicach 0 występują na ogół dla obiektów nieożywionych. Im wyższe jest odbicie w NIR i im mniejsze w RED, tym rośliny są bardziej zielone i wartość NDVI jest większa. Oznacza to, że rośliny zawierają więcej chlorofilu, który odpowiada za pochłanianie promieniowania czerwonego, oraz miękiszu gąbczastego, odbijającego promieniowanie podczerwone. Wysokie wartości są związane z aktywnością procesu fotosyntezy. Generalnie im wyższa wartość wskaźnika tym większa ilość biomasy. Przykładowe wartości:
 - Ujemne, zbliżone do zera wody
 - Dodatnie, zbliżone do zera odkryte gleby
 - 0,5 0,8 zdrowa, zielona roślinność w pełni sezonu wegetacyjnego
 - 0,3 0,4 roślinność sucha lub słaba
- W TNTmips można skorzystać z gotowego wzoru, który dodatkowo przemnaża cały wynik * 100. Dzięki temu nie trzeba zapisywać pliku w formacie zmiennoprzecinkowym. W takiej sytuacji wartości wskaźnika mieszczą się w zakresie < -100, 100 >

1. Indeks NDVI obliczamy w menu: raster/combine/predefined	Main Image Geometric Terrain Convert Script Tools Help Extract Auto Mosaic Manuel Massis
2. Wybieramy tym "Indices" i operację "ND"	Hyperspectral Photogrammetric Modeling Resample and Reproject
Image: Second state combination (12:40) Type Indices Operation ND Normalized Difference Index NormalDiff = (B · A) / (B + A) ^ Scale factor	Combine P Interpret Predefined Utilities User-Defined Linear Multilinear Regression Principal Components
Rasters	Progressive Transformation Decorrelation Convert Color Match Contrast Harmonic Series Multiresolution Fusion
Parameters Scale Factor 100	
Raster Type 8-bit signed integer Compression Uncompressed Rur Exit	X Help
UWAGA: koniecznie pamiętamy o zm wynikowego pliku na znakowy (8-bit s przeciwnym razie w wynikowym obrazie n	ianie typu s igned)!! W nie będziemy

mieć wartości ujemnych

- 3. Jako rastry wejściowe wskazujemy kolejno:
- A kanał czerwony (kanał 3 dla Landsata, kanał RL dla obrazów po skrypcie)
- B kanał podczerwony (kanał 4 dla Landsata, kanał RL dla obrazów po skrypcie

SRFINA SRFIRL	2010-11-24 2010-11-24	787 KB Raster 787 KB Raster	
Files 🗿 All 🧉 Selectab	le 🧊 rvo 💭 jp2 💭 sid 💭 a	adf 📁 📴 🗾 Objects 🛛	
Object Name	Description		Location
A SRFIRL			D:\zajec
B SRFINA	×		D:\zaje(

- Operację wykonujemy łącznie trzy razy nadając wynikowym rastrom odpowiednie końcówki. Wynikowe rastry zapisujemy jako obiekty w nowym pliku projektu *ndvi.rvc*
- 1) Z oryginalnych kanałów (DN): A kanał 3, B kanał 4, obiekt wynikowy: ndvi_dn
- 2) Z obrazów po skrypcie SRFI: A srfi_RL, B srfi_NA, obiekt wynikowy: ndvi_srfi
- Z obrazów po skrypcie TERCOR: A tercor_RL, B tercor_NA, obiekt wynikowy: ndvi_tercor

4. Korzystając z informacji o tym jakie zakresy NDVI charakterystyczne są dla jakiego rodzaju użytkowania terenu oraz posiłkując się obrazami wysokorozdzielczymi wybierz trzy obszary testowe o różnym użytkowaniu (np. woda, las, odsłonięta gleb, pole z roślinnością itp.).

5. Dla każdego z wybranych typów użytkowania przeprowadź analizę jak zmieniają się wartości poszczególnych plików ndvi (ndvi_dn, ndvi_srfi, ndv_tercor). Czy i jak duże są różnice. Od czego mogą zależeć. Analizy i wnioski poparte zrzutami ekranu dołącz do raportu.

Analizy można wykonać porównując wartości dla poszczególnych obszarów (korzystając z profilu) lub odejmując rastry od siebie. Przykład na kolejnej stronie

- 1. Otwieramy rastry, które chcemy porównać
 - 2. Wybieramy narzędzie "geotoolbox"
 - 3. Wybjeramy rysowanie linii prostej

📼 Disp	lay Group 7	- View 1 - Ge	oToobox (2668)	R		
File	Options						Help
	₽∕{				Að	X	
Select	Measure	Sketch	Region	Controls	Manual		

- View Tools GPS Options HotKeys
- 4. Rysujemy linię przez wybrane użytkowanie terenu (na przykładzie jest to woda powierzchniowa/staw)
 - 5. Otwieramy okno widoku profilu

- 6. Dodajemy te warstwy, które chcemy porównać
- 7. Patrzymy, myślimy, analizujemy, zastawiamy się dlaczego...

C. Interpretacja obrazów satelitarnych

XIV. Analiza wizualna kompozycji RGB

- Analizowanie danych teledetekcyjnych wymaga ich wizualizacji; najczęściej dokonuje się jej wykorzystując model barwny RGB, podstawiając wybrane kanały za odpowiednie składowe barwne; Pojedyncze kanały Landsata przyjmują wartości 0-255 (256 poziomów szarości). Podstawiając wybrane kanały pod odpowiednie składowe barwne (R – czerwony (red), G – zielony (green), B – niebieski (blue)) możemy otrzymać kombinację 2²⁴ czyli ponad 16 milionów wartości (najlepiej przypomnieć sobie zajęcia z grafiki komputerowej z pierwszego roku)
- Poniżej przestawione są wybrane kombinacje barwne:
- a. RGB 321 (czyli pod składową R podstawiamy kanał czerwony 3, składową G kanał zielony - 2, składową G kanał niebieski - 1) to kombinacja w barwach pseudorzeczywistych.
- b. RGB 741 (741) kombinacja w barwach nienaturalnych (zielonym kolorem są przedstawiane powierzchnie charakteryzujące się dużą biomasą; w bliskiej podczerwieni rośliny generalnie odbijają bardzo dużo promieniowania im większa jest biomasa, w konkretnych przypadkach stopień odbicia zależy od budowy liścia, stanu zdrowotnego roślin, stopnia rozwoju roślin; bardzo wysokie wartości DN w tym kanale (4) powodują, że powierzchnie roślinne mają zielony kolor; wszystko, co nie jest pokryte roślinnością jest przedstawiane kolorem różowym w różnych odcieniach; powierzchnie, pokryte roślinnością tylko w pewnym stopniu są przedstawiane kolorami pośrednimi między różem a zielenią;
- c. RGB 432 tzw. CIR color infrared, tej kombinacji roślinność jest przedstawiana kolorem czerwonym, a to co nią nie jest kolorem blado niebieskim;

Podobnie postępujemy dla pozostałych kombinacji (741, 432)

Możemy również wysotrzyć i złożyć "na stałe" trzy kanały w jeden obraz:

1. Wybieramy filtry przestrzenne i dla każdego z kanałów stosujemy filtr wyostrzający "high pass" lub "boost"

📼 Raster Spatial Filtering (3560)						_ 🗆 ×		
Filter Size He						Help		
Rasters 🔷 Single / Composite 💠 RGB (Intensity) 🛛 Filter: 🐟 All 💠 Polygon								
SRFI / SRFIMC SRFI / SRFINA SRFI / SRFIBL								
	Class:	General	-	Туре	High Boost	<u>_</u> _		

TNT	nips Free	2011					_ 🗆 🗙
lain	Image	Geometric	Terrain	Convert	Script	Tools	Help
	Extract.						
	Auto Mo	saic					
	Manual	Mosaic					
	Hypersp	ectral					
	Photogr	ammetric Mod	deling				
	Resamp	le and Repro	ject D				
	Filter		Þ	- Spatial Fil	ter		1
	Combine	9	Þ	Erequenc	u Filter	- 1	₽

- 2. Wyostrzone obrazy składamy w jeden przy pomocy opcji convert color.
- 3. Jako wejściowy wybieramy "RGB separate" i wskazujemy odpowiednie kanały
- 4. Jako wynikowy wybieramy "24-bit RGB" i zapisujemy jako plik "composition"

Filler .	·
Combine f	Automatic
nterpret I.	Predefined
Utilities I	User-Defined Linear
	Multilinear Regression
	Principal Components
	Progressive Transformation
	Decorrelation
	Convert Color
	M. L.G. L

