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Tomasz Błachowicz1, Viacheslav Andreychouk2

1Institute of Physics – Center for Science and Education, Silesian University of Technology, Gliwice, Poland, 
tomasz.blachowicz@polsl.pl 
2Pope John Paul II State School of Higher Education, Biala Podlaska, Poland

Abstract: The paper presents a new method of quantitative parameterization of volumetric-net geomorphological structures with the use of random walk 
formalism and an analysis of self-similarity exponent distribution derived from random walk experiments. As examples, two American three-dimensio-
nal Wind and Lechuguilla cave networks were elaborated. The provided methodology is able to uniquely characterize the morphology of cave systems. 
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Introduction

It is widely known that  geological and geomorphological 
objects can be treated as fractals (Laverty 1987, Chilès 
1988, Feder 1988, Maramathas, Boudouvis 2006). A spe-
cial place among them occupy the karst and speleological 
objects (caves) with a complex morphology. In the litera-
ture there are only a few studies on this topic (Curl 1986, 
Laverty 1987, Budge, Sharp 2008, Pardo-Igúzquiza et al. 
2012), the authors of which highlight the fractal nature 
of karst and try to apply some numerical parameters to 
solve specific problems. Also the authors of this article 
have taken earlier attempt to determine the fractal charac-
teristics of cave labyrinth in order to assess their morpho-
logical complexity (Andreychouk et al. 2013).

While a geometrical fractal can be created using math-
ematical operations (Mandelbrot, Ness 1968), a fractal 
character of natural cave systems is weakly predictable 
(Andreychouk et al. 2013, Curl 1986), since underlying 
processes of creation are stochastic (Havlin, Ben-Avra-
ham 2002, Pardo-Igúzquiza et al. 2014). From this results 
a need for quantitative characterization of such geomor-
phological random phenomena.

In the present paper, we propose a new approach to 
evaluate the morphological (morphogenetic) complexity 
of large caves based on a stochastic numerical experiment 
carried out on digital 3D-models of caves. Performed 
calculations are parameterized by the so-called self-sim-

ilarity exponent distributions. While we do not directly 
address fractal properties of cave networks, the fractal 
analysis of caves can be found in our previous work (An-
dreychouk et al. 2013). 

The paper is arranged as follows. At the beginning, 
after the presentation of investigated cave volumetric 
networks and after providing some explanations about 
base geomorphological mechanisms of their origin, a de-
scription of a random walk method is given. Next, results 
of calculations, carried out in the two networks of Wind 
and Lechuguilla Caves (USA) developed in carbonate 
rocks, are presented. At the end conclusions are provided.

The Wind and Lechuguilla Caves were chosen for 
analysis due to their three-dimensionality and huge com-
plexity. It is worth mentioning that the considered caves 
are hypogene in general (Klimchouk 2007, Klimchouk 
2009, Palmer 2011). 

Caves

Analyzed caves are located in the south west of the USA, 
in the states of South Dakota (Wind Cave) and New Mexi-
co (Lechuguilla Cave). Both caves with their surrounding 
areas are protected and are the “core” of national parks: 
Wind Cave National Park, and Carlsbad Caverns National 
Park, respectively. Both caves are one of the greatest, not 
only in the USA, but around the World. In the ranking 
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of the longest caves presented in 2013, they occupied re-
spectively 6th (Wind Cave, 229.7 km) and 7th (Lechu-
guilla Cave, 222.6 km) place (Gulden, 2013).

Both the Wind Cave and Lechuguilla Cave represent 
themselves extremely complex three-dimensional mazes 
with a complex geological history ongoing millions of 
years. These caves were created in hypogenic conditions 
involving different geological, hydrogeological and hy-
drogeochemical factors.

Both caves have a significant expansion in verti-
cal direction reaching nearly 220–500 m. In contrast to 
“flat” cave mazes, developed within a single, horizontal, 
fissured karst layer (i.e. gypsum cave mazes in Western 
Ukraine), the characterized caves are complex volumet-
ric labyrinths with morphology controlled by a number of 
structural-tectonic (slope layers, stratification and litholo-
gy) and structural-textural factors.

The Wind Cave system was developed in carbonate 
rocks, along with a sulphate zone that paralleled the an-
cient shoreline (Horrocks, Szukalski 2002), in the Black 
Hills area. Wind Cave is one of the most outstanding 
examples of multi-storey maze passageways. It extends 
through some individual limestone and dolomite layers of 
Mississippian (Carboniferous) age grouped together un-
der the name Pahasapa Limestone. The fissure passages 
of Wind Cave were developed within the several neigh-
boring layers of carbonate rocks with different litholog-
ical properties. Additionally, the fractured layers are not 
horizontal but are inclined. 

The Wind Cave has very long and complex geologi-
cal history. Its origin is still discussed but in general it is 
believed that cave was developed gradually in hypogenic 
conditions with the participation of hydrothermal water 
(Bakalowicz et. al. 1987, Ford 1989, Palmer 2011).

The Lechuguilla Cave (New Mexico,  Guadalupe 
Mountains) is developed in Permian (Guadeloupian) 
sediments of  the Seven Rivers and Capitan Formations 
differing by their lithology, mainly in carbonate and si-
liciclastic beds  (limestones and dolostones) (Garber et. 
al. 1989). Lechuguilla is a hypogenic cave that has been 
dissolved by sulfuric acid derived from oil and gas ac-
cumulations in the Delaware Basin of southeast New 
Mexico and west Texas (Hill 1987, Palmer, Palmer 2000). 
Primary porosity in the Capitan and Seven Rivers For-
mations was a reservoir for water containing hydrogen 
sulphide, and a pathway for oxygenated meteoric water 
prior to and during sulfuric acid speleogenesis.  Apparent-
ly, as is the case of Wind Cave, for the Lechuguilla Cave 
the stratigraphy-control of passage-orientation takes place 
(Du Chene, Martinez 2000). Also paleokarst phenomena 
are widespread in the geological environment of the cave 
and within the cave.

Unlike the Wind Cave, Lechuguilla has more vertical 
development. The differences between the highest and 
lowest parts equals 489 m (Gulden 2013). The boundaries 
of caves span the  1.7 km x 2.2 km x 0.2 km cuboid in the 
case of Wind Cave and 1.5 km x 3.3 km x 0.5 km cuboid 
in the case of Lechuguilla Cave. As it was mentioned be-

fore, both caves represent morphologically complex vol-
umetric mazes, but differ by their inner morphological 
structure resulting from geological (structural and strati-
graphic) reasons and height of cuboid. 

The main goal of the study is an attempt to assess the 
morphological complexity of the caves, above all, the de-
pendence of their morphology from the structural-geolog-
ical predispositions (fracturing and stratification of beds 
and series) and the impact of hydro-geological factors. 
We assume that the more regular (ordered) character has 
a morphology of caves, the smaller was the impact of hy-
drogeological factors, and vice versa. The aim of the sim-
ulation was to verify how the mathematical modelling of a 
random walk type can evaluate the internal morphological 
diversity of these caves. 

Research methodology

The method of analysis investigates the morphological 
complexity represented by a cave map (3D model) in a nu-
merical format readable by a Compass software (Fountain 
Computer). A given model was digitalized and represent-
ed by a black-white volumetric picture so that all internal 
regions, corridors and passages, became black, while all 
outside regions were white. The three-dimensional map 
is splitted into the two-dimensional layers of the 3.1 m 
thickness by the same software. Next, information about 
spatial volumetric scales related to a single pixel (voxel) 
were calculated, since it depends upon the scale at which 
a map was rasterized into pixels. For the three-dimension-
al Wind, and Lechuguilla Caves, the voxel  size equals 
(1.8 × 1.8 × 3.1) m3, and (2.3 × 2.3 × 3.1) m3, respective-
ly. Thus, the spatial scales of actual numerical images are 
comparable. The investigated map dimensions (in pixels) 
were equal to, (1256 × 663 × 65), and (1276 × 663 × 162), 
for the Wind, and Lechuguilla Caves, respectively. The 
numerical procedure of random walk is carried out with 
the use of the following main steps:
I. A random choice of the starting point (a black pixel) 

for a walk,
II. A walk with the 6 equally possible single step, for the 

assumed number of time of repetitions,
III. A calculation of a distance launched,
IV. A repetition of the experiment, in 1000 times, with the 

same starting point chosen in step I,
V. Calculation of the average distance launched during 

the above steps of II–IV,
IV. A choice of the another starting point, at random, and 

the repetition of the experiment for 1000 times – the 
repetition of II–V steps leads to the another value of 
averaged distance.
The mentioned steps are described below in details.
A virtual random movement starts from a randomly 

chosen black pixel on the digital image of the cave. There 
are only six options that can be performed for the next 
step in the three-dimensional experiment – left, right, for-
ward, backward, up, and down.  The walk can be repeated 
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many times (~1000) for the chosen starting pixel, and the 
resultant distances are averaged to provide a single mean 
value. Time of a walk, expressed by the number of trials, 
can be varied beginning from a rational minimum of 1/15 
of the number of layers creating the three-dimensional 
representation of caves, for example, it was equal to 4 (the 
approximation of 65/15) for in the Wind case. The maxi-
mum values of trials were 1/2 part of the number of layers 
creating the three-dimensional representation of caves, 
for example 65/2≈33 for in the Wind case. The choice 
of trials warrants a linear dependence between averaged 
squared distance and numbers of trials, while the slope 
of this dependence reveals the unique information about 
a cave network. A given random experiment is repeated 
for different randomly chosen points – 5000 repetitions 
provides enough amount of information – and the results 
are presented as distribution of the slopes. 

In general, such statistical experiments reveal the 
property, known from literature (Mandelbrot, Ness 1968),  
that an averaged squared random-walk distance increases 
naturally with the time scale t (represented here by the 
assumed number of random walk steps) in the following 
manner

 <r2> = At2H (1),

where <r2> is the squared averaged distance obtained 
from repeated trials, A is a constant of no importance for 
our analysis, and H is the self-similarity exponent or the 
so called Hurst exponent. From the statistical perspective 
the Hurst exponent is an indicator of structural complexi-
ty and the type of correlation between subsequent random 
walks. For the H<0.5 regime walks are negatively corre-
lated, meaning that after a step in a given direction the 
next step is the same direction is less probable than in the 
back direction. For the H>0.5 regime walks are positively 
correlated, meaning that after a step in a given direction 
the next step is the same direction is highly probable. The 
H=0.5 case is the purely random walk with all steps of 
equal probability or lack of correlations between them. 

For example, for the random walk taking place on a black 
rectangle, H equals 0.5 (Fig. 1) and then Eq. 1 simplifies 
to <r2> = At. However, in general, the square root of <r2> 
scales in time as the power of an arbitrary H, namely

 √(r2) = √AtH (2),

and thus, after calculating the logarithm of the above we 
obtain

 log √(r2) = 1/2log A + H log t ≈ H log t (3).

Thus, after the simple logarithmic operation a linear 
dependence between the averaged distance √(r2) and time 
t is accessible, while the Hurst exponent H is the adequate 
slope of the logarithmic graphs of √(r2) vs. time. The in-
verse of H is equal to a so called diffusion dimension df 
being another important parameter characterizing objects 
in nature. For a totally filled (black) system, without any 
internal spatial structure, df equals 2. Thus, Eq. 2 with H = 
1/df can be treated as formal definition of the diffusion di-
mension. The diffusion dimension belongs to a set of pa-
rameters classifying fractals, e.g. fractal capacity dimen-
sion or fractal correlation dimension, and can be used to 
characterize objects in nature (Andreychouk et al. 2013).

The quantitative method, presented in the current pa-
per, relies on finding a self-similarity exponent distribu-
tion unique for a given cave image. The general rule is 
that the more tiny details took place at a map, and the 
more morphologically complex cave is, then lower values 
of H are obtainable. Values of H significantly larger than 
0.5 represent so called anomalous diffusion, and they are 
not encountered in geological objects (Feder 1988).

Results and discussion

The Hurst exponent distributions, calculated for the caves 
along with fitted curves (components), are given in Fig. 2. 
The fitting to histograms employs three Gaussian-shaped 
components of four different peak-positions Hi along with 
their widths wt (i = 1…4), enabling  quantitative estima-
tion of cave complexity.

The calculated parameters are shown in Table 1. 
The working rule can be expresses as follows: the 
smaller that the value of the Hurst exponent is, and 
the larger the component aerial intensity (the area un-
der a given component fitted in the histogram) is, then 
the more intense the morphostructural diversity takes 
place. This is why a first component pair of parameters 
(H1, w1) distanced most away from 0.5, can be associated 
with thinned structural predispositions for speleogenesis, 
while the fourth component pair of parameters (H4, w4), 
located closely to the 0.5 value, are informative for more 
global predispositions. It is worth emphasizing that, the 
widths of fitted components can be treated as a measure of 
contribution of subsequent karstification factors. 

Fig. 1. The black image test performed inside a rectangle of 
3448 pixels x 3696 pixels size. The self-similarity exponent 
was determined as the very narrow peak with maximized va-
lue positioned at 0.50
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Performed calculation provided the four Hurst com-
ponents equal to 0.480, 0.489, 0.496, and 0.499. Hence, 
the 0.499 component significantly prevails over the oth-
ers. It is indicative for non-correlated, random processes 
involved in morphogenesis. As examples, for the Wind 
Cave it may be the action of hydrothermal water and for 
the Lechuguilla Cave the impact of water enriched with 
sulphur acid. Additionally, both Wind and Lechuguil-

la caves, have long, complex speleogenetic history, the 
different processes are overprinted on one another (Levy 
2007, Palmer 2011). All these circumstances produce a 
‘noisy’ structural diversity.

In other words, the structural complexity of the 
three-dimensional caves is very diversified and the level 
of this diversity can be expressed by relevant location of 
Hurst exponents. Importantly, the values of all Hurst ex-

Fig. 2. The Hurst exponent distributions for the Wind Cave (a), 
and the Lechuguilla Cave (b). The dominating 0.499 compo-
nent is characteristic for very random network system. The 
width of lines reflects a three-dimensional passages density 
which is higher for Wind Cave

Table 1. Parameters of Hurst exponent histograms (Fig. 2): positions of components maxima and its widths (FWHM)

Cave
Hurst exponent at maximum Full width at half-maximum

H1 H2 H3 H4 w1 w2 w3 w4

Wind Cave 0.480 0.489 0.496 0.499 0.008 0.002 0.007 0.003
Lechuguilla Cave 0.484 – 0.496 0.499 0.008 – 0.006 0.001
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ponents for the Wind and Lechuguilla Caves are placed 
relatively closer to the 0.5 value. 

The comparison of calculations (parameters in the Ta-
ble 1 and Fig. 2) show that Wind Cave seems to be more 
deterministic from structural predispositions point of 
view (H1 = 0.480, H2 = 0.489)  than Lechuguilla Cave (H1 
= 0.484, H2 = 0). The structural control of its morpholo-
gy is better visible, than in the case of Lechuguilla. This 
follows, probably, from the less significant transforming 
impact of thermal (Wind Cave) than sulphuric-acid (Le-
chuguilla Cave) water onto the fissures and pores of lay-
ers. A vertical character, and a relatively poor horizontal 
development of Lechuguilla Cave, in comparison to Wind 
Cave, is also reflected by a fewer number of components 
and its smaller width (Fig. 2).

Conclusions

The presented analysis of  the morphological structure of 
caves with complex morphology with the use of Hurst ex-
ponent and a random walk method allowed for the quan-
titative description (in general) of uniformity and struc-
tural regularity of volumetric cave networks. The most 
informative in the presented analysis is the self-similarity 
(Hurst) exponent distribution, its spectral components of 
characteristic shapes and positions.

The distribution shape is uniquely characterized by 
its width and the level of its symmetry. Obtained shapes 
reflect the level of morphological uniformity or diversity 
of local structure. If cave parts are significantly different 
from contractual average, and their structure is more di-
verse, isotropic and chaotic, then the Hurst exponent dis-
tribution is more spread in values, non-uniform and can 
even have local maxima and minima. On the other hand, 
if the Hurst exponent distribution is narrower, then the 
cave network structure can be more ordered, anisotropic 
and regular. 

A shift of distribution into the smaller values of Hurst 
exponent scale, is indicative of the existence of more lo-
calized structural features. If a distribution is shifted to-
wards the 0.5 value, then it is characteristic for the ex-
istence of large empty spaces (halls) or the existence of 
very dense, random networks of closely located passages 
or fissures.

Despite the sophisticated structural complexity of spe-
leological objects, we suggest that proposed numerical 
methodology may be useful for parameterization purpos-
es due to introducing new quantitative parameters char-
acterizing morphology of three-dimensional cave-mazes. 
As an example of the similar, quantitative characteriza-
tion of cave morphology, based on image-processing, 
fractal dimension calculations, and the lacunarity indices, 
can be found in the recent review work of Kambesis et al. 
(2015). Obtained values of fractal dimension were equal 
to 2.6488, and 2.6792, for the Wind Cave, and the Le-
chuguilla Cave, respectively. It means the values are very 
similar. The lacunarity index, being a measure of gaps 

between material objects, was also comparable for both 
caves: 0.9407, and 0.9623, respectively. In such cases the 
method of random walk can be supportive for additional 
distinction between similar caves.

The authors believe that further research efforts are 
desirable to better understand speleomorphogenesis of the 
wider class of three-dimensional speleological systems 
with the use of the random walk numerical experiments 
and self-similarity analysis.
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