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Abstract: The paper presents a new method of quantitative parameterization of net geomorphological struc-
tures with the use of random walk formalism and an analysis of Hurst exponent distribution derived from 
random walk experiments. As examples, horizontally developed gypsum caves were elaborated. The provid-
ed methodology is able to uniquely characterize cave systems.
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Introduction
It is widely known that geological objects can be 
treated as fractals (Laverty 1987, Chilès 1988, Mar-
amathas, Boudouvis 2006, Budge, Sharp 2008, Par-
do-Igúzquiza et al. 2012). While a geometrical fractal 
can be created using mathematical operations (Man-
delbrot, Van Ness 1968), a fractal character of natural 
cave systems is weakly predictable (Curl 1986, An-
dreychouk et al. 2013), since underlying processes of 
creation are stochastic (Havlin, Ben-Avraham 2002, 
Pardo-Igúzquiza et al. 2014). From this results a need 
for quantitative characterization of such geomorpho-
logical random phenomena.

In the present paper, we propose a new approach 
based on a stochastic numerical experiment carried 
out on digital maps of caves. Performed calculations 
are parameterized by so-called self-similarity expo-
nent distributions. However, we do not directly ad-
dress fractal properties of cave networks. The fractal 
analysis of caves can be found in our previous work 
(Andreychouk et al. 2013). The paper is arranged as 
follows. At the beginning, after the presentation of 
investigated cave networks and some explanations 
about base geomorphological mechanisms, a descrip-
tion of a random walk method is presented. Next, 
results of calculations carried out for three different 
maze caves (Western Ukraine) developed in gypsum 
are given. At the end conclusions are provided. The 

Ukrainian Optymistychna, Ozerna and Kryshtaleva 
Caves were chosen on purpose, since they represent 
a unique example of large, two-dimensional morpho-
logical complexes. It is worth mentioning here that 
all considered caves are hypogene in general (Klim-
chouk 2009, Palmer 2011).

Cave networks

The chosen two-dimensional caves are the largest 
Miocene gypsum caves of Western Ukraine. Their to-
tal lengths of corridors are as follows: Optymistychna 
(232 km), Ozerna (131.4 km), and Kryshtaleva (22.6 
km) (Klimchouk 2012). The caves represent enor-
mous and dense nets of underground passages suit-
able for statistical analysis. The areas of the caves 
range from 0.3 to 2.5 km2 (Klimchouk et al. 2000). 
A ratio of the area to a thickness of the gypsum layer 
(~20 m) allows them to be treated as two-dimen-
sional objects with a good approximation, however 
there is no formal standard vertical extent to define 
two-dimensional vs. three-dimensional caves.

From the geomorphological perspective, for the 
Ukrainian caves, the network of observed fissures 
constitutes the structural prerequisites of morpho-
genesis. Regular research concluded it is formed 
mainly by the subsequent overlapping of the two 
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main fracturing systems of different origin, namely 
the lithogenetic and the tectonic (Klimchouk et al. 
2009). This can result in the formation of structures 
with more or less regular geometrical properties – 
the lithogenetic polygons and the tectonic rectangles 
(Fig. 1). A pre-speleogenetic spatial system is not cre-
ated by independent superposition of these two local 
mechanisms, but by the integrated process, where 
the tectonic system of fissures evolves due to the ex-
isting distribution of strains, created by the adoption 
of primordial lithogenetic fissures. This results in a 
specific geometrical modifications and domination of 
some spatial directions (Klimchouk et al. 2009).

Importantly, in the case of caves being investigat-
ed here, we deal with distinct types of competitions 
between lithogenetic and tectonic contributions. The 
random walk analysis possesses an ability to resolve 
these effects quantitatively, what will be shown below.

Research methodology

The method of analysis investigates the morpholog-
ical complexity represented by a cave map. A given 
map is transformed into a black-white picture so 
that all internal regions, corridors and passages, are 
black, while all outside regions are white. Next, in-
formation about spatial scales related to a single pixel 
size of digital images is classified, since it depends 
upon the scale at which the map is rasterized into 
grids. For the two-dimensional Optymistychna, Oz-
erna, and Kryshtaleva Caves, those sizes are equal to: 
2.2 × 2.2, 2.2 × 2.2, and 0.5 × 0.5 m2, respectively. 
Thus, the spatial scales of actual numerical images 
are roughly comparable, in the x and y dimensions, 
for all the investigated cases. The investigated image 
dimensions were equal to 3295 × 2952, 1936 × 1437, 
and 4048 × 2983 pixels for the Optymistychna, Oz-
erna, and Kryshtaleva, respectively.

As a next step of calculations, a random walk ex-
periment is applied. It relies on virtual random mov-

ing, beginning from a randomly chosen black pixel 
on the digital image of the cave. There are only four 
options that can be performed for a next step in the 
two-dimensional experiment – left, right, forward 
and backward. In a case of border pixel the walk is 
restricted only to three possibilities. Also, for a very 
rare case of the corner pixels only the two possibili-
ties are accessible. The walk is repeated many times 
(it is numerical time of the walk) for the same start-
ing point, and random distances obtained for random 
final points, are averaged to provide a single mean 
value of the resultant distance. Besides, the time 
of a walk, is varied within a range of values: begin-
ning from a rational minimum of the 1/15 part of 
the image shorter side (for example 2952/15≈197 
for the Optymistychna case) to a maximum value of 
the 1/2 part of the shorter image side (for example 
2952/2 = 1476 for in the Optymistychna case). This 
choice of walk-times is quite arbitrary; in practice it 
should fall into the 102–103 range for typical digital 
images.

Thus, for the given starting point chosen at ran-
dom, we obtain a set of averaged resultant distances 
as a function of numerical time. The example of a sin-
gle random walk experiment is presented in Figure 2. 
Next, the numerical experiment is repeated for dif-
ferent randomly chosen points (for example 1000), in 
order to test the whole image at different locations, 
and the final performed distance again is averaged for 
the given value of numerical time of walk.

In general, such a statistical experiment re-
veals the property, known from literature (Havlin, 
Ben-Avraham 2002), that an averaged squared ran-
dom-walked  distance increases naturally with time 
scale t (represented here by the assumed number of 
random walk steps) in the following manner

	 〈r2〉 = At2H (1)

where:
	– 〈r2〉 is the squared averaged distance obtained 

from repeated trials,

Fig. 1. Formation of fissure networks in gypsum layer due to the effect of tectonic stresses on the primary network of litho-
genetic fissures
a) the primary polygonal network of fissures, b) the induction of the primary network by tectonic cracks, c) the developed cave labyrinth 
induced by the integrated network of fissures, 1 – the lithogenetic fissures, 2 – the newly-created tectonic cracks, 3 – the Cave corridors 
developed along fissures (Andreychouk 2007, Klimczouk 2009)
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 – A is a constant, no important for our analysis,
 – H is the self-similarity exponent or the so called 

Hurst exponent.
The averaged distance for the purely random walk 

obviously vanishes, 〈r2〉 = 0. From the statistical sci-
ence point of view the Hurst exponent is an indica-
tor of structural complexity and a type of correlation 
between subsequent random walks. For the H<0.5 
regime walks are negatively correlated, meaning that 
after a step in a given direction the next step in the 
same direction is less probable than in the back di-
rection. For the H>0.5 regime walks are positively 
correlated, meaning that after a step in a given di-
rection the next step is the same direction is highly 
probable. The H=0.5 case is the purely random walk 
with all four steps having equal probability and lack 
of correlations between them. For example, for the 
random walk taking place on a black rectangle, H 
equals 0.5 (Fig. 3) and then Eq. 1 simplifies to 〈r2〉 

= At . From structural complexity point of view, the 
lower value of the H is, the smaller details take place 
in the map. However, in general, the square root of 
〈r2〉 scales in time as the power of an arbitrary H, 
namely

 . (2)

Thus, after calculating the logarithm of the above 
we obtain

 . (3)

Thus, after the simple logarithmic operation a lin-
ear dependence between the averaged distance √〈r2〉 
and time t is accessible, while the Hurst exponent 
H is the adequate slope of the logarithmic graphs of 
√〈r2〉 vs. time. It is worth to emphasize that the Hurst 
exponent is the parameter obtained from the linear 
dependence (Eq. 3) and the given, concrete value of 
H represents the averaged tendency to complete a 
given random distance starting from a random point 
at the image. Since for natural objects have complex 
structure, this tendency is local-dependent, then for 
such cases there no single value of H but the whole 
set of possibilities, the distribution of H exponents.

The quantitative method, presented in the current 
paper, relies on finding a self-similarity exponent dis-
tribution unique for a given cave map. The general 
rule is that the more tiny details took place at a map, 
and the more morphologically complex cave is, then 
lower values of H are obtainable. Values of H signifi-
cantly larger than 0.5 represent so called anomalous 
diffusion, and they are not encountered in geological 
objects (Feder 1988).

Fig. 2. An example of random walk experiment conducted 
at a monochromatic image of the Optymistychna Cave
a) the starting point is chosen at random, and b) the enhanced 
trace positions of all walked steps; the obtained distance r(t) can 
be calculated from coordinates of initial and final points

Fig. 3. The black image test performed inside a rectangle 
of 3448 × 3696 pixels size. The self-similarity exponent 
was determined as the very narrow peak with maximized 
value positioned at 0.50
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Fig. 4. The Hurst exponent distributions for three gypsum caves: a) Optymistychna Cave, b) Ozerna Cave, and c) Krysh-
taleva Cave
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Results and discussion

The Hurst exponent distributions, calculated for the 
three caves along with fitted curves (components), 
are given in Figure 4. The fitting to histograms em-
ploys three Gaussian-shaped components of different 
peak-positions: H1, H2, and H3 and widths: w1, w2, and 
w3, and , enabling simplified, while quantitative, es-
timation of cave complexity. The fitting was carried 
out using Origin software.

Optymistychna Cave is an example of a quite di-
versified geological structure (Fig. 4a). The distri-
bution of Hurst exponent values is relatively wider 
than the distributions of the other caves. The very 
characteristic for Optymistychna Cave is the narrow 
minimum localized at 0.45 that splits the histogram 
into two main components – the left one located at 
the similar position of 0.440 and the right one maxi-
mized at 0.467. Obtained splitting and the existence 
of largest total width, among other caves, results 
from the very rich morphogenetic diversity.

The case of Ozerna Cave is different (Fig. 4b). 
The whole distribution is relatively narrow and char-
acteristically shifted into the larger H values. The 
obtained histogram is asymmetrically raised close 
to the 0.5 value. It is indicative for larger volumet-
ric forms like rooms. Even if Ozerna does not really 
look uniform in morphology, i.e. the north-western 
sections of the cave appear to have more fissure mor-
phology whereas the central and south parts of the 
cave have different maze morphology, the histogram 
of Figure 4b is characteristically shifted mainly due 
to the north-western features.

Kryshtaleva Cave is quite different from the two 
mentioned above. In Figure 4c there is a very intense 
peak located at H = 0.50 value, which is clearly inter-
pretable as huge volumetric regions in the southern 
part of the cave and more dense maze in general. Ad-
ditionally, the distribution is far from being smooth, 
and the H > 0.5 contributions are relatively intensi-
fied. This is also understandable, since its geomor-
phological structure reveals dominating anisotropic, 
parallel passages, and in this sense this structure is 
more unidirectional – the passages enforce one-direc-
tional random walks in a given direction. Despite the 
0.50 peak, the actual distribution has an intrinsic, 
separate, wide contribution positioned at the 0.474, 
with the wide but less intense component located at 

0.433. These two wide spread out components can 
be interpreted from a structural perspective, since it 
may be assumed that the cave has a system of two 
types of passages oriented mutually perpendicular. 
The similar spread of the values can be seen for the 
Ozerna Cave, and especially for the Optymistychna 
Cave, however the interpretation of these results re-
quires future studies.

The calculated parameters are shown in Table 1. 
The parameters reveal that the degree of karstifica-
tion, for the Ukrainian caves, can be correlated par-
ticularly with the third Hurst H3 exponent, located 
close to the 0.5 value. The second Hurst exponent 
H2, in histograms located centrally – and partially the 
first Hurst exponent H1 – reflect a cave network di-
versity. These parameters are correlated with a cave 
porosity (Klimchouk 2007). The working rule can be 
expressed as follows: the smaller that the value of 
the Hurst exponent is, and the larger the component 
aerial intensity (the area under a given component 
fitted in the histogram) is, then the more intense the 
structural diversity takes place. This is why a first 
component pair of parameters (H1, w1), distanced 
most away from 0.5, can be associated with thinned 
lithogenetic structural predispositions for speleogen-
esis, while the third component pair of parameters 
(H3, w3), located closely to the 0.5 value, are inform-
ative for more global tectonic predispositions. It is 
worth emphasizing that, the widths of fitted compo-
nents can be treated as a measure of contribution of 
subsequent karstification factors. Obtained data are 
well correlated with an increasing order of growing 
porosity and passage density (Table 1). The greater 
values of Hurst exponents are indicative for the larg-
er porosities and the passage densities.

Conclusions

The presented analysis of a cave structure with the 
use of Hurst exponent and a random walk method 
allowed for the quantitative description of uniform-
ity and structural regularity of cave networks. The 
most informative in the presented analysis was the 
self-similarity (Hurst) exponent distribution, its 
spectral components of characteristic shapes and 
positions.

Table 1. Parameters of Hurst exponent histograms (Fig. 4), positions of components maxima (H) and its widths (w). Po-
rosities and passage densities after (Klimchouk 2007)

Caves
H1 w1 H2 w2 H3 w3 Porosity Passage density

[–] [%] [km km–2]
Optymistychna 0.423 0.029 0.440 0.010 0.467 0.040 2.00 127.03
Ozerna 0.428 0.027 0.477 0.036 0.495 0.080 5.04 150.00
Kryshtaleva 0.433 0.020 0.474 0.042 0.501 0.070 6.04 169.23
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The distribution shape is uniquely characterized 
by its width and the level of its symmetry. Obtained 
shapes reflect the level of morphological uniformity 
or diversity of local structure. If cave parts are sig-
nificantly different from contractual average, and 
their structure is more diverse and chaotic, then the 
Hurst exponent distribution is more spread in val-
ues, non-uniform and can even have local maxima 
and minima. On the other hand, if the Hurst expo-
nent distribution is narrower, then the cave network 
structure can be more ordered, anisotropic and reg-
ular. Comparing two-dimensional caves (Fig. 4, Tab. 
1) it becomes obvious that Optymistychna Cave has 
the lowest level of morphogenetic diversity, while the 
Ozerna and Kryshtaleva Caves have the larger one.

A shift of distribution into the smaller values of 
Hurst exponent scale, is indicative of the existence of 
more localized structural features. If a distribution is 
shifted towards the 0.5 value, then it is characteristic 
for the existence of large empty spaces (halls) or the 
existence of very dense, random networks of close-
ly located passages or fissures. Comparing obtained 
distributions with maps of caves, it becomes quite 
clear that Kryshtaleva Cave has the largest rooms 
which stand out from a normal system of passages. A 
similar property, but less evident, was also detected 
in Ozerna Cave as indicated by more dense maze lo-
cated in several places (Fig. 4b).

Taking into account all the parameters of histo-
grams we conclude that the morphogenesis of Kry-
shtaleva Cave results mostly from the contribution 
of tectonic restructuring of primary fissure net-
works. Consequently, this tectonic-based restruc-
turing is less important for Ozerna Cave, and even 
less for Optymistychna Cave. Their networks are 
very diverse, heterogeneous, and referring to the pri-
mary polygonal system of cracks, less modified by 
tectonics.

Despite the sophisticated structural complexity of 
geological objects, we found the proposed numerical 
methodology as useful for parameterization purpos-
es by introducing new quantitative parameters char-
acterizing morphology of hypogene cave-mazes. The 
authors believe that further research efforts are de-
sirable to better understand speleogenesis of the wid-
er class of two-dimensional and three-dimensional 
geological systems with the use of the random walk 
numerical experiments and self-similarity analysis.
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