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ABSTRACT

Recent interest in the numerical simulation of drainage basin and land surface evolution
raises several issues concerning the status of physically based modelling in the analysis of
landscape development. Most models use a continuum description for characterizing
material transport within and across system boundaries. The scale at which continuum flux
models break down is often not considered in the specification of mathematical models of
surface development, despite its importance in the modelling of hillslope processes
contributing to channel initiation and in the field testing of physically based models.
Dimensional analysis and scaling are important modelling techniques, which are still
relatively underused in descriptions of landscape development, and can simplify an
analysis by eliminating redundant or extraneous variables and terms in governing
equations as appropriate for the scales of interest. They can also be used to identify key
dimensionless quantities which must have similar values if a laboratory or other
quantitative study is to be considered representative of a selected field environment. Many
of the constitutive functions for material transport used in contemporary models are very
similar, at least in general form, to those found in earlier studies. Current work in this area
is concerned with the relative contributions of advective versus diffusive transport and
with the inclusion of threshold versus non-threshold processes for channel initiation in
quantitative models. The results of numerical simulations that rely on the calculation of
constitutive quantities on a point-by-point basis according to a set of prescribed rules are
not necessarily comparable to numerical solutions based on a discretization of the fully
coupled model system. Although geomorphologists have tended to prefer the first of these
approaches for its ease of implementation, it has yet to be established that this choice is a
sound one and that such simulation techniques do not produce misleading or erroneous
results.
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INTRODUCTION

Physically based modelling and the mathematical formalism associated with model
derivation and solution represents a fundamental research methodology used pervasively
throughout the earth sciences. Its introduction in the study of landscape development is
often associated with the models presented by Culling (1960, 1965), Scheidegger (1961),
Ahnert (1967, 1973, 1976) and Kirkby (1971, 1976), although as pointed out by Cox
(1977) credit for the first mathematical continuum model of slope development should
perhaps be given to Jeffreys (1918). This chapter reviews the current status of this general
methodology (which is often referred to simply as 'mathematical modelling' but which
strictly speaking is more appropriately described as 'quantitative constitutive modelling')
and includes discussions of the continuum hypothesis, the use of dimensional analysis and
dimensionless groups to simplify models, the development of constitutive functions to
characterize material transfer, and the coupling of these concepts into formal models.
Rather than consider the wide array of topics within geomorphology in which this type of
modelling has been applied, the emphasis herein will be on its use in describing land
surface development at the hillslope to drainage basin scale. This area of work not only
represents a contemporary, albeit much more quantitative, counterpart to the models of
early geomorphologists such as Gilbert (1877, 1909) and Davis (1892, 1899), but is also
of considerable recent interest due to a need for coupled hydrologic/geomorphic models
which can be used to assess the response of surfaces to land-use or climatic changes. This
latter demand motivates the development of quantitative geomorphic models which are
compatible with, and contribute appropriate variables to, the somewhat more refined
physical descriptions of transport processes employed by surface and subsurface
hydrologists (and in some cases fluvial geomorphologists) but which also account for
ongoing changes in the configuration of a surface.

The development of a mathematical model is often presented as a sequence of pro-
cedures (e.g. Thomas and Huggett 1980) in which one generates a hypothesis, constructs a
mathematical model based on identified variables, simplifying assumptions and boundary
conditions, develops a model solution which may be more or less quantified depending on
the degree of specificity of the relationships between model variables, and finally
compares model predictions with observations. If a lack of adequate correspondence
between the observed and predicted variables is found, then the model is either partially or
entirely redesigned to minimize the discrepancies and thus provide better predictions.
Alternatively, a new set of observations which more closely reflects the variables,
simplifying assumptions and boundary conditions used in the model, may be collected or
compiled for the purposes of model testing. The sequence of procedures is then repeated
until the objectives underlying model development are achieved. Assuming this larger
framework for mathematical model development, this chapter focuses primarily on the
process of model construction, although issues pertaining to solution methods or field
testing are pointed out where they illustrate how physically based modelling can be more
fully exploited in the study of landscape development than it currently is. The compilation
and analysis of data for the field testing of hypotheses derived either from the modelling
process or otherwise are not discussed herein as they are considered elsewhere in this
volume.
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THE CONTINUUM HYPOTHESIS

The most fundamental physical concept invoked in the development of mathematical
models of landscape evolution is the principle that mass is conserved and can therefore be
accounted for with a mass balance. This idea underlies not only quantitative models, but is
also central to the systems approach to modelling popularized by Chorley (1962) and even
to Davis' (1899), Gilbert's (1877) and Hack's (1960) discussions of land surface change
with time. The 'mass' of primary interest is that portion of earth materials that extends
above a reference datum and is of varying compositions, volumes and densities. One
accordingly defines system boundaries which allow one to characterize the influx and
outflux of mass, but which also provide for a system large enough so that the phe-
nomenon of interest can be investigated. Given these general requirements, it is not
surprising that early quantitative models of surface development focused on hillslopes
(e.g. Scheidegger 1961; Ahnert 1967; Kirkby 1971) as the system boundaries can be
clearly distinguished, often taking the form of a divide at the top of the slope and a stream
at the bottom, with the slope laterally extending to infinity. The length of a single hillslope
also seems to pose a scale that is potentially tractable in the field for model testing. It
should not be overlooked, however, that these early mathematical models of slope
development were not constructed in isolation from the qualitative discussions of land-
scape change that preceded them, and that they provided a tool for evaluating many of the
concepts posed earlier in which the scale of interest had already been defined (e.g. Figure
3 of Hack 1960).

The quantification of a physical mass balance is generally based on a continuity
equation which provides a foundation for the formal structure of the model. This equation
usually takes a differential form, although other forms are possible, and characterizes both
the influx and outflux of mass across system boundaries and the internal redistribution of
material with time. This theoretical structure is thus very consistent with the scientific
questions posed by geomorphologists. Problems may arise, however, in the interpretation
and testing of models if the proposed continuum scale used to model the flux accounted
for by the mass balance is not carefully considered in the modelling process.

The continuum hypothesis prescribes the existence of a length scale at which the
properties of the system can be described by some representative average so that
constitutive relations describing material flux and redistribution can be defined.
Additionally, for all physical systems, an upper and lower bound may exist on the
magnitude of the length scale at which a particular continuum model can be applied, and
these will vary significantly between systems. A classical application of this hypothesis is
in the study of fluid flow for which one distinguishes a length scale that is significantly
larger than the scale at which one would 'see' the behaviour of individual molecules and
which must be smaller than the scale at which large variations in physical properties
would undermine the approach (Figure 11.1). Clearly, if the fluid of interest is water, then
the lower bound on the appropriate length scale for defining system properties, such as
fluid viscosity, will be much smaller than it is for, say, flowing granular materials. In both
cases, the upper bound on the continuum length scale is often the physical boundaries of
the vessel in which the fluid is contained, but it may also be more subtly associated with
variations in physical properties that occur over relatively large length scales and therefore
cannot readily be described by a single average value. Similarly, the continuum hypo-
thesis underlies the description of porous media flow based on Darcy's law
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Figure 11.1 Variations in a typical physical property such as viscosity, hydraulic conductivity or
surface roughness as a function of increasing length scale

such that the lower bound at which this description is applicable is given by the length
scale associated with the size of individual pores and the upper bound is often influenced
by regional heterogeneity in hydraulic conductivity and may be difficult to distinguish.

The application of a continuum model for land surface development presumes that one
can identify a length scale at which denudational processes can be described as a material
flux that is not predetermined by a superimposed structure or spatial pattern external to the
model. As has long been recognized by geomorphologists, there exists a spatial scale at
which regional structural features and tectonic processes significantly influence patterns of
surface deformation. These features and processes effectively impose an upper bound on
the length scale of applicability of many continuum models for surface evolution, as
discussed by Scheidegger (1992) in somewhat different terms. The incorporation of this
upper bound into quantitative denudation models is often as an initial surface
configuration or as an external forcing function, but the coupling of denudation models
with regional tectonic models (e.g. Koons 1989) can serve a similar role. Thus, as is the
case with both the fluid and porous media examples described in the previous paragraph,
upper bounds on the length scale at which a particular continuum flux model can be
applied often simply represent either the presence of distinct physical boundaries or
limitations on the range of variables incorporated into a particular continuum model for
material flux.

The lower bound on a continuum length scale for modelling surface denudation is
critical in many geomorphic studies and may be imposed by a variety of physical factors.
As is true for the upper bound, the magnitude of this length scale depends upon the
specificity of the model, especially the transport functions used to describe the flux, and
moreover on the field environment of interest. In many cases, the granularity of the
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surface itself, the surface structure imparted by the presence of vegetation, or perhaps the
mean path length of an individual granular particle while in transit, effectively impose a
lower limit on the length scale at which a continuum transport model can be applied. This
is not to say that the net or average effects of these physical factors on the overall flux of
sediment cannot be incorporated into a model of landscape evolution; however, they rarely
explicitly appear in constitutive model formulations for surface sediment flux. In most
cases, the scale of applicability for continuum sediment transport models may be at least
an order of magnitude larger than the surface detail that frequently attracts the eye in the
field.

Early quantitative modellers could largely neglect the issue of identifying an inter-
mediate length scale associated with continuum model applicability as they were primarily
interested in the general relationship between process and form observed in hillslope
profiles (e.g. Smith and Bretherton 1972; Kirkby 1971) and on surfaces in which a
preexisting slope-valley configuration was superimposed (e.g. Ahnert 1976). However,
contemporary models of simultaneous land surface and drainage basin evolution that seek
to couple hillslope and channel network development must tackle this question of scale
directly. The initiation and development of a drainage network itself introduces a series of
multiple length scales (e.g. Tarboton et al. 1988; Rigon et al. 1993) and these may not
necessarily correspond to the upper and lower bounds on a continuum length scale for
modelling the denudation of unchannelized slopes. Of paramount importance is the
problem of channel initiation and maintenance and specifically the length scale at which
this occurs in the landscape (e.g. Dietrich et al. 1992; Montgomery and Dietrich 1992), the
extent to which this length scale represents physical factors which are internal to the slope
system or externally imposed (e.g. Loewenherz 1991a, 1994a; Izumi and Parker 1995),
and the feasibility of incorporating a physical understanding of this scalar process into
coupled models of drainage basin evolution (e.g. Willgoose et al. 1990, 1991a; Howard
1994). These questions are central to the development of physically based models for land
surface development that can be applied both to further our understanding of the natural
landscape and to assess the potential impacts associated with disturbances to the system.
The following two sections of this chapter will consider the formulation of transport
functions for use in continuum flux models that are consistent with the physical scales of
interest.

DIMENSIONLESS GROUPS AND PHYSICAL SCALINGS

The development of a theoretical model, whether pursued using qualitative or quantitative
methods, relies on the identification of a set of dependent variables or configurations that
one seeks to explain and a set of independent variables or events that appear to contribute
to that explanation. The identification of the appropriate variables for inclusion in a
mathematical model and the relationships between those variables is to a certain degree an
inductive process, such that the opportunity for spontaneity, serendipity and the exercise
of 'common sense' is as vital to the success of this methodology as it is to more qual-
itative techniques (cf. Baker and Twidale 1991). Beyond the application of the
conservation of mass as discussed in the previous section (and perhaps also the con-
servation of momentum in the case of modelling very rapid surface processes),
geomorphologists are often left with relatively little guidance from physics or other basic



278 SCIENTIFIC NATURE OF GEOMORPHOLOGY

sciences as to a quantitative form of surface weathering and transport processes. This is
due largely to the differing spatial and temporal scales of interest, but also reflects the
complexity of the phenomena they seek to explain. In practice, transport models are often
formulated based on a combination of qualitative field or laboratory observations, the
results of statistical analyses of quantified data, and physical reasoning. This section will
discuss how dimensional analysis, a physical modelling technique that is relatively
underused by geomorphologists, can assist in simplifying the array of variables that are
incorporated into formal mathematical statements and also ensure that the resulting formal
model focuses on relevant spatial and temporal scales.

The use of dimensional analysis is often thought of in its most elementary form,
dimensional homogeneity, in which each group of terms in a quantitative statement must
have the same dimensional representation in order for the statement to be physically
meaningful. Accordingly, the physical dimensions associated with empirical coefficients
in transport functions are often predetermined by the other variables used in an expres-
sion. For example, a very simple one-dimensional model for a steady-state hillslope
profile in which the rate of surface transport is locally dependent on the slope is given by

where h is the elevation at a point on the surface, qs is the sediment flux across the surface,
S is the local surface slope, x and t are space and time coordinates respectively, and k is an
empirical constant. In order for this set of equations to be dimensionally homogeneous,
both the surface sediment flux, qs, and the empirical constant k must have the physical
dimensions [L2

 /T]. This latter constant is referred to as a diffusion coefficient for surface
transport due to its role in equation (3) and its associated physical dimensions.

An equally important use of dimensional analysis is in the development of
dimensionless groups based on the variables contributing to a physical phenomenon.
These dimensionless groups serve two major functions in physical modelling. Firstly, they
provide a basis for comparing models or data independent of the underlying physical (e.g.
spatial) scales. Secondly, they can be used to identify terms in a set of governing equations
which may be neglected under a given set of conditions, so that the resulting formal model
is specific to the physical scales of interest, and does not necessarily apply more generally
to the entire range of possible values for all of the mathematical variables. According to
Buckingham's ∏ theorem, the number of independent dimensionless groups that are
necessary to describe fully a phenomenon known to involve n variables is equal to the
number n - r, where r is usually the number of physical dimensions (such as mass, length
or time) underlying the dimensional form of the variables. (For further discussion of this
theorem and its application in physically based modelling see Langhaar 1951.) Thus, the
total number of those groups will always be less than the number of original variables, so
that this technique can be used to simplify problem statements, both those which are used
in the development of formal models and those which underlie the design of field or
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laboratory experiments. However, the actual form that the dimensionless groups take (i.e.
how the variables are arranged) is not unique, so that the choice of groupings must be
guided by sound physical judgment and constant reference to the physical problem of
interest.

Although process geomorphologists frequently encounter dimensionless groups
developed in other scientific disciplines, such as the Reynolds number and the Froude
number for describing fluid flow regimes and the Shields criterion for the incipient motion
of uniform sediments, relatively little explicit attention has been given to the fundamental
dimensionless groups that characterize the processes contributing to landscape evolution.
They have been used for many years, however, and both 'Horton's laws' for describing
drainage networks (Horton 1932, 1945) and the hypsometric integral for presenting the
distribution of surface elevations within a basin (Strahler 1952) utilize dimensionless
groups allowing the attributes of different systems to be compared independent of spatial
scale. Similarly, the results of early quantitative models of hillslope development (e.g.
Scheidegger 1961; Kirkby 1971; Ahnert 1976) are often presented in a scaled or
dimensionless form. All of these examples represent geometric scalings in which variables
having fundamental physical dimensions of length or area, such as the surface elevation,
the distance downslope, or the basin area above a given elevation, are scaled by quantities
which are constants for a given field environment and have the same fundamental physical
dimension. Typical scaling factors which are used to normalize the above variables are the
maximum elevation, the total slope length, or the total area of a basin, respectively. The
resulting dimensionless variables usually take on values from 0 to 1, and this facilitates the
comparison of systems representing very different absolute spatial scales.

As models of land surface evolution incorporate increasingly detailed and coupled
physical processes, an explicit recognition of the role of dimensional analysis and scaling
in model development beyond simple geometric normalizations, such as those presented
above, becomes essential. Although this is beginning to emerge in recent work (e.g.
Willgoose et al. 1991a; Loewenherz 1991b, 1994a), this technique has yet to be fully
exploited in landscape modelling studies. Willgoose et al. (1991b) discuss the use of
dimensional scaling in some detail and present a set of dimensionless groups that
characterize both transient states and conditions of dynamic equilibrium for their own
landscape evolution model (i.e. Willgoose et al. 1991a). Many of the fundamental physical
scales underlying the derivation of those groups can be readily interpreted, such as the
vertical and horizontal magnitude of the drainage contributing area; however, others, such
as the runoff and channel initiation scales, require further explanation and are quite
specific to the constitutive functions used in this model. Nevertheless, there are two
distinct advantages in their use of a dimensionless model over one in dimensional form.
First of all, the number of variables necessary for describing the system is reduced (in
their case, the 30 original dimensional variables are effectively replaced by approximately
15 dimensionless groupings), and this provides for a much more parsimonious use of
numerical simulations or other techniques for obtaining model results. Additionally, the
dimensionless groups establish a basis for comparing model results with field or
laboratory experimental studies in that they specify the parameters that must be of similar
magnitude in order for two physical systems to be considered similar. This latter
advantage is very aptly illustrated by the authors in their analysis of the catchment
modelling laboratory experiments reported by Parker (1977) and Schumm et al. (1987).
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Their analysis demonstrates that there is not necessarily a similarity of process between
those experiments and typical field scale catchments due to a dominance of diffusive
transport in the experimental configuration as compared with the field environment. The
dimensionless group, which should be of a similar value, describes the ratio of diffusive
transport to fluvial sediment transport on the surface and is approximately 100 times
greater for the experimental catchment than would generally be associated with a field
scale catchment.

A related use of dimensional analysis and scaling in physical modelling is in
simplifying the equations governing a physical system by assigning relative magnitudes to
the multiple physical scales appearing in a problem statement. This technique facilitates
the mathematical analysis and interpretation of a physical problem, as demonstrated in the
stability analyses for land surface development and channel initiation considered by Smith
and Bretherton (1972) and Loewenherz (1991a, b, 1994a). In those models, the governing
equations that are actually evaluated to assess the conditions leading to channel initiation
are considerably simplified from the more general form of the governing equations. This
simplification is achieved by identifying the relevant physical variables specific to the
problem of interest (e.g. the hillslope length, the average depth of the surface water flux,
the rate of tectonic uplift), establishing the relative magnitude of key variables (e.g. the
average depth of the surface water relative to the length of the hillsope, which for most
cases of land surface evolution one would assume to be very small), using the associated
scalings to generate dimensionless forms of the variables, and finally distinguishing those
terms in the dimensionless equations that dominate the behavior of the system from those
which contribute negligibly. The associated dimensionless groups pose constraints on the
range of conditions represented by the model solutions. Some of these constraints are
quite simple, such as the dimensionless 'erosion time scale' specified by Smith and
Bretherton (1972), which takes the form

where t is the time scale associated with measurable changes in the surface, α is the
average effective rainfall rate on the surface, Do scales both the vertical and horizontal
lengths of the surface,  ε is a dimensionless scaling factor and is posed as being very small
(i.e. << 1). Thus, equation (4). directly implies that the time-dependent solutions for their
model apply to surfaces for which the nominal surface lowering rate Do/t is very small
relative to the rainfall rate, α, driving the surface water flux. This constraint is clearly
appropriate for many, but perhaps not all, problems of long-term surface denudation.

The physical scalings derived from a dimensional analysis can also provide a basis for
expanding and coupling physical models to represent system behaviour at multiple length
scales. This strategy is illustrated in the physically based model for channel initiation
presented by Loewenherz (1994a) which couples a kinematic model for sediment transport
at the hillslope scale with a hydrodynamic model for local sediment flux at the scale of
channel initiation. The principal distinctions between this work and that of Smith and
Bretherton (1972) lie in the differentiation of downslope and lateral length scales asso-
ciated with surface erosional processes, and in the explicit characterization of the effects
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of surface water hydrodynamics on the advective transport of sediment. Two key
dimensionless parameters which govern the coupling of the hydrodynamic with the
kinematic model are given by

where D, L and B are length scales corresponding to the depth of the surface water and the
downslope and transverse (cross-slope) dimensions of the surface respectively, such that δ
is very small under the physical conditions associated with channel initiation by surface
flow. The timescale parameter, Σ, incorporates the mean downslope velocity of surface
water, U, and the amount of time associated with large-scale effects on the evolution of
the surface, as represented by T, in addition to the downslope length of the surface, L. This
parameter is also expected to be very small for time scales at which hydrodynamic effects
in the surface water flux can be expected to contribute to the local evolution of the surface.
Although it is very difficult to provide useful solutions, either analytical or numerical, for
the surface evolution problem if the hydrodynamic model is applied at the scale of the
entire drainage surface, the use of this physical scaling facilitates the analysis by
identifying the length scale at which surface water hydrodynamics will begin to contribute
significantly, rather than negligibly, to the behaviour of the system.

CONSTITUTIVE FUNCTIONS FOR MATERIAL TRANSPORT

Following the identification of relevant independent and dependent variables and the
clarification of the physical scales of interest, the relationship between variables must be
specified if one seeks to generate model solutions. In developing models of denudational
processes, one is primarily concerned with identifying constitutive functions for
weathering and surface transport processes. Although the earliest mathematical models of
slope profile development neglect physical discussions of the constitutive functions used
in solving those models, both Ahnert (1967, 1976, 1977) and Kirkby (1971, 1976) pay careful
attention to this issue in the development of their models and incorporate the findings of
contemporaneous research in the specification of transport functions. The constitutive
functions for sediment transport that are currently used to simulate landscape evolution
(e.g. Willgoose 1991; Howard 1994) are very similar in their general form to those Ahnert
and Kirkby originally proposed. There has nevertheless been considerable recent attention
(Dietrich and Dunne 1993; Kirkby 1994) given to the different classes of transport
functions that need to be quantified in order for a model of landscape evolution to be
representative of the range of conditions occurring in the natural environment. This
section will highlight some of the issues arising out of those discussions, particularly the
differentiation of advective and diffusive transport processes, the use of general versus
specific functional forms in analysis, and threshold versus non-threshold processes and
their relationship to the more general issues of the continuum length scale underlying the
physically based model.
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Many of the constitutive models for material transport which are used in modelling land
surface development can be reduced to the general set of variables given by

                                                                            qs = f(S, qw)                                                           (7)

where qs is the sediment flux, S is the local surface slope and qw is the surface water flux.
This basic functional relationship is often further simplified by using the contributing area
per unit contour width as a surrogate for the amount of surface water that will accumulate
at a point, so that material transport is given entirely as a function of surface geometry.
The variables presented in equation (7) are often used in the somewhat more specific form
given by

where n and m are empirical constants usually assumed to be > 0, and F is a linear or
bilinear function of the variables Sn and mqw . As discussed by Kirkby (1971) and Smith
and Bretherton (1972), this form of the equation for sediment flux reflects reported field
and laboratory observations of a range of sediment transporting processes.

Two very different system behaviours can be distinguished based on the relative
sensitivity of the sediment transport to the surface slope versus the surface water flux, as
measured by the magnitude of the partial derivatives of the transport function F, with
respect to S versus qw (Smith and Bretherton 1972; Kirkby 1980). The first class of
physical processes is generally diffusive in character in that material transport occurs in
response to a gradient, which in this case is given by the slope of the surface elevation.
Diffusive processes tend to stabilize physical systems as they eliminate strong gradients
by locally redistributing material from zones of high concentration to those of lower
concentration, thus reducing the magnitude of the gradient. In models of land surface
development, diffusive processes contribute to the general smoothing of the surface in that
they preferentially erode the steepest elements of the landscape. The second class of
processes, representing those transport phenomena which rely on the aid of a transporting
medium, such as the surface water, qw, to move material through the system, are advective
or concentrative in character. In contrast to diffusive processes, these processes contribute
to the local incision and dissection of the surface, both by providing a mechanism for the
removal of material from the system which may be independent of the local surface slope
and by enhancing the tendency for local surface water accumulation which then increases
the capacity for material entrainment and removal. This differentiation between diffusive
and advective sediment transport is broadly analogous with functional forms of transport
models used in other areas of physical science, such as heat transfer and porous media
flow. It is of both physical and mathematical significance as the coupling of a strictly
diffusive transport function with a continuity equation results in a parabolic partial
differential equation, while a purely advective system is hyperbolic in character. This
distinction in turn has implications for the solution techniques, either analytical or
numerical, which are most appropriate for evaluating system behaviour. (For more
thorough discussions of this topic, see e.g. Pinder and Gray 1977 or Ames 1992 for the
case of numerical techniques; Hassani 1991 for the case of analytical methods.)
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For two-dimensional models of surface development, the material transport function
must specify both the magnitude and local direction of the sediment flux and is often of
the form given by

where m is the direction of the local slope and thus determines the pathways for sediment
across the surface. However, if the local pathways associated with advective sediment flux
are to be explicitly distinguished from those associated with the diffusive flux, as is
necessary for evaluating channel initiation (Loewenherz 1991b, 1994a), then the
constitutive function must include this distinction and thus be written as

where r is the local direction of the surface water, FA is the magnitude of the advective
component of sediment transport, FD is the magnitude of the diffusive component, and the
subscripts 1 and 2 are used to distinguish the empirical constants associated with advective
transport and diffusive transport respectively. It is important to note that equations (9) and
(10) are still rather general constitutive functions as they do not indicate specific values
for n and m, nor do they specify multiplicative or additive constants for the variables.
However, they can be used in conjunction with constraints on the behaviour of the
derivatives of the functions to provide some very useful qualitative insights into the
processes of landscapes development and especially into the relative roles of diffusive
versus advective transport in channel initiation (e.g. Smith and Bretherton 1972; Kirkby
1980; Loewenherz 1991a, 1994a). Furthermore, and of particular relevance in light of the
'detachment-limited' simulation model recently presented by Howard (1994), the general
formulations given by equations (9) and (10) neither neglect nor preclude the inclusion of
constant factors or coefficients into a fully quantified problem statement. They are thus
not strictly limited to the analysis of transport-limited conditions, although much previous
work has relied on this assumption. Accordingly, the addition of a critical shear stress as a
specified constant in the sediment transport function does not in itself establish a new
class of solutions that are distinct from those encompassed by the analysis of equation (9).
The magnitude of the physical scales implied by these additional constants (i.e. just how
large the transporting capacity must be before sediment transport will occur, the time scale
over which one can anticipate that significant transport will occur, and the size of the
surface area likely to be affected once transport is initiated) may, however, have
implications for the continuum flux model used in the analysis.

Recent discussions of hillslope transport processes, especially those contributing to
channel initiation, point towards a fundamental distinction between threshold and non-
threshold processes in landscape development (Dietrich and Dunne 1993; Kirkby 1994;
Montgomery and Dietrich 1989). Processes characterized by distinct thresholds contribute
to the initiation of surface channels with well-defined banks, and non-threshold, more
'gradual', processes are associated with valley formation. In other types of physical
problems, thresholds often represent a discontinuity in the equations or conditions gov-
erning transport, such as those which are associated with a shock wave in a compressible
flow. An incipient surface channel with a well-defined channel head and banks often
represents a morphological discontinuity (e.g. see illustrations in Montgomery and
Dietrich 1989; Dietrich and Dunne 1993), and the equations governing the flux of water
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and sediment across the adjacent unchannelized surface will be different from those
associated with transport in the channel. Therefore, the concept of a morphological
threshold may be quite appropriate in these circumstances, particularly at this scale of
resolution. However, for the purposes of modelling, the more fundamental question is to
what extent can certain types of hillslope processes that ultimately result in the initiation
of surface channels (e.g. surface wash and landsliding) be differentiated as threshold
versus non-threshold processes. The resolution of this issue seems to be directly linked to
the scale of observation of sediment-transporting events as compared with the continuum
length scale that underlies the physically based model. In other words, although sheetwash
erosion is characterized as a continuum process in most models of land surface
development, the microscale process consists of a series of discrete, 'threshold-based'
events. Similarly, in environments where landsliding is the dominant hillslope-forming
process, land surface morphology is often the product of numerous discrete events, such
that in principle, there may be a larger length scale at which this ongoing series of events
could also be modelled as a continuum process. The distinction between these two
categories is thus directly related to the magnitude of the length scale of interest relative to
the typical length scale that characterizes surface deformation during a single event. If the
magnitude of these scales is similar, then an appropriate continuum scale cannot be
defined. However, if the length scale that is being modelled is much larger than that which
is affected by microscale processes (which may or may not include local thresholds), then
the continuum hypothesis is valid and the aggregate effects of this process on surface
development can be defined using a continuum model.

MATHEMATICAL MODELS OF LAND SURFACE EVOLUTION

Formal mathematical models of land surface development are usually derived by applying
the continuity equation to account for the transfer of mass within the system in the general
form

where h is the surface elevation, qs is the sediment flux that is given by a constitutive
function similar to those discussed in the previous section, m is a vector describing the
local surface gradient, and T represents any external forcing, such as tectonic uplift, which
is contributing to time-dependent changes in the configuration of the land surface. The
divergence operator, (∇⋅), constrains the redistribution of mass, and takes a variety of
specific forms, depending on the spatial coordinate system which is used in the problem.
An additional continuity equation is often also employed to account for the flux of water
across the surface, so that it can be described as a local variable for use in the constitutive
function. The dependent variable, h, is the actual elevation of the surface at a point in
space and time so that this equation describes the relationship between process (the
sediment flux) and form (the elevation) for evolving surfaces. When the constitutive
function consists only of diffusive (i.e. slope-dependent) processes, equation (11) reduces
to a diffusion equation, and the time-dependent behaviour of the landscape is analogous to

( ) )11(s Tq
t
h +⋅∇−=

∂
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other diffusive physical processes, such as the molecular diffusion of solutes. The
conditions of dynamic equilibrium are described by simply setting the time rate of change
of the surface, i.e.∂h/∂ t, equal to zero, so that the system represents a balance between
tectonic uplift, T, and the flux of sediment through the system.

Beyond the simple case of a strictly diffusive system in dynamic equilibrium, it can be
surprisingly difficult to provide actual mathematical solutions, either analytical or
numerical, for the time-dependent surface evolution problem described by equation (11)
for cases which are of interest to geomorphologists. This is due to several factors,
including:

 1.  The multidimensional nature of the problem;
2.  The relatively nonlinear character of the transport functions for the surface sediment

flux which arises from the exponents on S and qw in equations (9) and (10);
3. The presence of advective transport which precludes the modelling of the system as

strictly diffusive and changes the governing equation from one that is parabolic to one
that may exhibit both parabolic and hyperbolic behaviours;

4. The spatially non-uniform behaviour of transport processes, particularly as associated
with the general downslope increase in the importance of advective transport as surface
water progressively accumulates from upslope contributions;

5. The physical discontinuity which may be associated with the presence of surface
channels.

Full mathematical solutions for the governing equations, which consider multidimensional
surfaces, encompass both diffusive and advective transport, and incorporate the tendency
for surface channel initiation and development, are thus virtually non-existent in the
geomorphic literature.

Two alternative approaches are, however, used to effectively 'solve' and thereby obtain
results for landscape evolution models. The first of these is represented by the general
technique of numerical simulation, in which a set of rules which describe the processes of
surface erosion on a local basis and are derived from the constitutive functions and a mass
balance accounting (e.g. Ahnert 1976; Kirkby 1986; Howard 1994) is applied to a lattice of
points representing the surface and then reapplied at subsequent time steps, so that the
problem is marched forward in time. The simulation technique is very attractive due to its
intuitive character, its low demand on computational capacity (as the large matrices used in
the simulation are never inverted as they would be under many numerical solution
schemes), and the ease with which subsystems can be coupled to generate a larger model
system. However, although rule-based simulation results are often considered by
geomorphologists to be analogous to an analytical or at least an approximate numerical
solution for the fully coupled differential equations governing the system, we have yet to
establish the range of conditions for which this is in fact true. Of particular concern is the
general nonlinear character of the transport functions and the associated potential for
instability in the physical system, which in many other areas of physically based modelling
(e.g. fluid dynamics) virtually precludes the use of simple simulation techniques. As
models for surface evolution become increasingly sophisticated, and particularly as
mechanisms for channel initiation are identified and incorporated into constitutive
functions, the reliability of simulation results relative to those provided by full numerical
solutions based on a discretization of the fully coupled model system deserves attention.
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Analytical techniques, such as asymptotic and stability analyses, which evaluate various
aspects of the system behaviour within well-defined limits (e.g. Smith and Bretherton
1972; Loewenherz 1991a, b; 1992, 1994a, b) have also been used to obtain results from
land surface evolution models. These methods, while often unable to provide complete
solutions, can nevertheless establish important constraints on the behaviour of the physical
system (e.g. conditions associated with tendency for surface channel initiation) and can
also be used to check the validity of numerical results. Although they remain relatively
inaccessible to many geomorphologists, their role may become more prominent as other
cognate disciplines (e.g. geophysics, civil engineering) continue to take an increasing
interest in landscape evolution and as the availability and use of reliable computer
software capable of algebraic and other symbolic manipulation (e.g. Mathematica by
Wolfram Research, Inc.) become more widespread.
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