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ABSTRACT

Increasingly, geomorphic systems are viewed as nonlinear dynamical systems (NDS) and
are examined using the tools and concepts of NDS theory. Many geomorphic systems have
recently been shown to exhibit the more complex traits of some NDS, including
deterministic chaos and self-organization. The exercise of determining that a geomorphic
system has, or may have, deterministic complexity is quite troubling to many
geomorphologists, usually for one or more of four general reasons:

1. Expectations of what NDS theory can or should reveal are unrealistic.
2. Many NDS concepts and analytical techniques are imported from mathematics and

physics, where the simple, abstract systems bear little resemblance to complicated real-
world landscapes.

3. NDS analyses are often based on mathematical models which lack rigorous field tests.
4. Merely showing that a geomorphic system exhibits determinstic complexity, while

providing a plausible explanation for unexplained real-world complexity, provides no
mechanistic explanations of geomorphic process or evolution.

This chapter addresses these issues. It is argued that many concepts and definitions of
traditional or mainstream NDS theory are indeed inappropriate for earth sciences. There is
a need for alternative concepts and definitions devised or adapted specifically for the earth
sciences. This is worth doing, as there are examples of specific, testable hypotheses
generated by NDS theory which suggest that the latter has some legitimate explanatory
value in geomorphology. Finally, a case study of the evolution of soil landscapes is used to
show that NDS theory can generate insight into mechanisms of landscape evolution. NDS
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theory, concepts, and methods are not a panacea for geomorphology; neither are they
simply a bandwagon fad. Rather, they provide another useful tool in the geomorpholo-
gist's kit.

INTRODUCTION

There is chaos in geomorphology. Many geomorphic systems show clear evidence of
chaotic dynamics and deterministic complexity. These phenomena cause many nonlinear
dynamical systems to behave unpredictably (at certain scales), to exhibit extraordinary
sensitivity to initial conditions, and to show complicated, pseudorandom patterns even in
the absence of environmental heterogeneity and stochastic forcings. There is also chaos
among geomorphologists, in the more traditional sense. Some have hailed chaos theory
and other aspects of NDS theory as a revolutionary perspective. They see a potential to
fundamentally change our view of earth surface processes and landscape evolution, and to
provide answers to previously unanswerable questions. At the far end of the continuum,
NDS theory receives derisive sneers as just another scientific fad, with little relevance to
geomorphology beyond providing more toys for computer modelers. Near both ends of the
continuum there is considerable hand-wringing that geomorphologists are either missing
the nonlinear boat, or riding a nonlinear bandwagon.

Given the widespread impacts of NDS theory, not only in mathematics and physics, but
in our neighbour disciplines of climatology, meteorology, and geophysics, it was
inevitable that geomorphologists would investigate chaos, fractals, and other aspects of
NDS, and attempt to apply them to geomorphic problems. The result is that a number of
studies have shown that geomorphic systems may exhibit chaos, complex
self-organization, and other forms of deterministic complexity. Having done so, we face
the question: So what? To have value beyond the pedagogic, applications of NDS theory
in geomorphology must provide testable hypotheses, and/or answers to significant
geomorphic questions. In this chapter I will attempt to determine the extent to which that
is the case.

DETERMINISTIC CHAOS IN GEOMORPHIC SYSTEMS

Instability, Chaos, and Entropy

There is neither need nor space for a review of NDS theory as it applies to earth surface
systems. Rather, I will briefly review the methodological basis of my arguments, opting in
this case for self-citation rather than self-plagiarism (Phillips 1992a, 1993b, 1994, 1995a,
b). Essentially, if you can describe a geomorphic system as a system of partial differential
equations, as a box-and-arrow diagram, or as an interaction matrix specifying the
components and whether they have positive, negative, or negligible impacts on each other,
the stability of the system can be determined using the Routh-Hurwitz criteria (RHC). It
does not matter if the system is nonlinear - it probably is - because the stability properties
of the original nonlinear system and the interaction-matrix linearized version of it are
identical. The RHC allow one to determine whether or not the system has any positive
Lyapunov exponents. If it does, the system is unstable to small perturbations and
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potentially chaotic. An n-dimensional (where the number of dimensions equals the
number of components) system has n Lyapunov exponents, which determine the rate of
convergence or divergence of initially similar system states in the system phase space, and
thus the sensitivity to perturbations or to variations in initial conditions.

Sensitivity to initial conditions is depicted by this standard relationship from chaos
theory, where the ∆ represents the difference between two system states at the start (time
zero) and at some future time t:

                                                         ∆t ~ ∆0eλt                                                                    (1)

The separation at time t is a function of the Lyapunov exponent. The system is not, and
cannot be, chaotic unless there is at least one positive Lyapunov exponent. Because an
unstable system has at least one λ > 0, dynamic instability is tantamount to a chaotic
system. In much of the NDS literature, a chaotic system is in fact defined as one which has
a positive Lyapunov exponent.

Deterministic chaos is a property of some NDS whereby even simple deterministic
systems can produce complex, pseudorandom patterns, independently of stochastic for-
cings or environmental heterogeneity. In chaotic systems complexity and unpredictability
are inherent in system dynamics. Such systems are strongly sensitive to initial conditions,
in that initially similar states diverge exponentially, on average, and become increasingly
different over time. Chaotic systems are also sensitive to perturbations of all magnitudes.

The Kolmogorov (K-) entropy of a NDS measures its 'chaoticity', because K-entropy is
equal to the sum of the positive Lyapunov exponents. In real landscapes, measured
entropy can be due to deterministic complexity, or to 'colored noise', the combination of
randomness and deterministic order. Culling (1988b) was apparently the first to suggest
exploiting the relationship between K-entropy (estimated using standard statistical or
information theoretic entropy measures) and chaos in geomorphic systems. In this chapter
it is used to show the relationship between self-organization, instability, and chaos. Note
that there are three forms of entropy referred to in geomorphology. Thermodynamic
entropy is a measure of the amount of thermal energy unavailable to do work, or the
disorder in a closed system. Statistical (information theoretic) entropy measures the loss of
information in a transmission, or the degree of disorder in a statistical distribution.
Kolmogorov (K-) entropy measures the expansion of a system's phase space (the
n-dimensional space defining all possible system states or combinations of values of the n
components). The mathematical equivalence of these entropy measures is evidence of
their interrelatedness (Brooks and Wiley 1988). The argument here deals specifically with
K-entropy. Brooks and Wiley (1988) argue from an analogy between thermodynamic and
K-entropy, but Culling (1988b) shows that when the complexity of a topographic surface
increases, both statistical and K-entropy also increase. Zdenovic and Scheidegger (1989)
demonstrate the change in statistical entropy during landscape degradation. Ibanez et al.
(1990, 1994) and Phillips (1995b) show that modes of landscape evolution whereby the
complexity or diversity of the landscape increases (for example, fluvial dissection or
progressive pedogenesis) result in increasing K-entropy (and vice versa). The statistical
entropy of a spatial or temporal distribution produced by a nonlinear dynamical system is
an estimate of its K-entropy (Culling 1988b; Kapitaniak 1988).

Self-organization is common in geomorphology (Hallet 1990), and is seen in, among
other things, slope morphology, bedforms, patterned ground, beach cusps, and drainage
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networks. Self-organization is linked to instability and chaos, and can be described using
the K-entropy. The formal mathematical arguments are spelled out elsewhere (Phillips
1995a, b), but can be summarized thus:

1. If a geomorphic system is organizing itself, initially similar forms are becoming
differentiated, as for example when a planar bed develops ripples or dunes; a landscape
is dissected by fluvial erosion; or weathered debris develops soil horizons.

2. This differentiation represents increasing divergence over time, on average.
3. Increasing divergence over time requires a positive Lyapunov exponent, and thus finite

positive K-entropy.
4. The increasing divergence cannot continue indefinitely (cf. the finite amplitude of

ripples and dunes; fluvial erosion to base level; soil profile maturity). This means that
while the phase space stretches exponentially in one direction according to the largest
positive Lyapunov exponent, the overall volume of the phase space must contract.

5. If phase space contraction is to occur in a nonlinear dynamical system the sum of all n
Lyapunov exponents must be negative.

   The positive λ reflect the K-entropy or 'chaoticity', and the rate of disorganization; the
negative λ give the rate of organization. If an open, dissipative geomorphic system is to
organize itself, there must be at least one positive Lyapunov exponent, but the sum of λ
must be negative. The sum of the diagonal elements of the system interaction matrix are
equal to the sum of real parts of the complex eigenvalues, and to the Lyapunov exponents.
If all diagonal elements are < 0 or > 0 the result is clear; otherwise the relative magnitude
of positive or negative terms must be known. These diagonal elements are self-effects, i.e.
self-limiting or self-reinforcing feedback mechanisms for components of the geomorphic
system.
   There are two criteria for determining whether a geomorphic system is self-organizing,
subject to two assumptions:

1. The system is a (probably nonlinear) dynamical system of the form

dxi/dt = fi (x1, x2, …, xn),(c1,c2, . . ., cn)          i = 1,2, . . ., n.                     (2)

The x's are the n components of the geomorphic system and the c's coefficients.
2. The system can be represented by an n x n interaction matrix A. The equations need not

be fully specified, and in fact a box-and-arrow model or qualitative interaction matrix
may be the working tool.

    In practice the assumptions can be satisfied if the critical internal components of a
geomorphic system can be identified, and if the system components, subject to their
external inputs and constraints, can be described as functions of each other. The criteria
are:

•  The matrix A is unstable according to the Routh-Hurwitz criteria.
•  The sum of the diagonal of A is negative (Σ aii < 0).

The mechanics of this analysis are illustrated in the case study later in the chapter.
    Then, subject to the assumptions, putting the arguments into reverse shows that a self-
organizing open, dissipative geomorphic system must be unstable according to the RHC.
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If it is unstable, it is also chaotic, as it must have at least one λ > 0. Self-organization
indicates deterministic chaos.

Evidence of Chaos

Deterministic chaos is present in turbulent flows, and therefore plays a role in the
mechanics of many geophysical phenomena which include turbulent flows (see Turcotte

Table 13.1   Geomorphic systems found to be potentially chaotic, or asymptotically unstable, which
is tantamount to chaos (see text)

Geomorphic system or phenomenon Method Reference
(see notes)

___________________________________________________________________________________________
Infiltration-excess runoff generation 1, 2 Phillips (1992b)
Stream flow 3, 5 Jayawardena and Lai (1994)
Marsh response to sea level rise 1, 2 Phillips (1989a, 1992a)
At-a-station hydraulic geometry 1,2 Slingerland (1981)

Phillips (1990, 1992b)
Downstream hydraulic geometry 1,2,6 Callander (1969)

Ergenzinger (1987)
Evolution of fluvially dissected landscapes 2 Ibanez (1994)
Evolution of soil landscapes 2 Ibanez et al. (1990)
Evolution of regolith and soil thickness 6 Arlinghaus et al. (1992)

Phillips (1993a, e)
Soil development 1,2,6 Phillips (1993b, c, d)
Drainage basin evolution 6 Willgoose et al. (1991)

Ijjasz-Vasquez et al. (1992)
Topographic evolution (relief increasing) 4 Phillips (1995a)
Semiarid soil-landform-vegetation-climate 1 Thornes (1988)

systems
Phillips (1993f)

Microtopographic roughness of glacial 2 Elliott (1989)a

deposits
River planform change 2, 5 Hooke and Redmond (1992)
River longitudinal profiles 6 Slingerland and Snow (1988)

Renwick (1992)
Solute (Ca) runoff 5 Kempel-Eggenberger (1993)
Coastal onlap stratigraphy 6 Gaffin and Maasch (1991)
Initiation of channelized surface drainage 6 Smith and Bretherton (1972)

Loewenherz (1991)
Microtopography - soil property relationships 2 Miller et al. (1994)a

Turbulent fluid flows 1, 2, 3, 4, 5, 6 Numerous authors;
see Turcotte (1992) for an
introduction

Generalized geomorphic mass flux systems 1, 6 Mayer (1992)
Phillips (1992c)

Hydrothermal eruptions 2, 5 Nicholl et al (1994)
Earthquake activity 3 Li and Nyland (1984)
Fluvial bedforms I Mendoza-Cabrales (1994)

Notes: (1) Stability analysis to test for positive eigenvalue or Lyapunov exponent. (2) Test of empirical data for
sensitivity to initial conditions. (3) Correlation dimension of singular spectrum analysis of time series. (4) Largest
Lyapunov exponent or Lyapunov spectrum analysis of time series. (5) Phase portrait or attractor reconstruction.
(6) Numerical simulation models. All methods except (6) rely (in the references cited) on field data or conceptual
models derived from field observations.
a These authors did not explicitly address chaos or stability, but present field evidence of either increasing
divergence over time, or disproportionately large landscape variations arising ftom very small variation in some
controlling factor.
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           Table 13.2 Studies finding evidence of self-organization in geomorphic systems

Gemorphic system or phenomeon Method Reference
(see notes)

_________________________________________________________________________________

Formation of periglacial patterned ground 1, 3 Hallet (1990
Werner and Hallet (1993)

Formation of nonperiglacial patterned ground 1, 3 Ahnert (1994)
Evolution of beach cusps 3 Werner and Fink (1994)
Lateritic weathering 1 Nahon (1991)
Fluvial riffle-pool sequences 1, 3 Clifford (1993)
Fluvial bedforms 1, 3 Nelson (1990)

McLean (1990)
Landslides 1 Haigh (1988)
Sedimentary organization of gravel barrier beaches 1 Carter and Orford (1991)
Sandpile models 3 Bak et al (1987)

Carlson et al. (1990)
Drainage network evolution 2, 3 Woldenberg (1969)

Rinaldo et al. (1993)
Takayasu and Inaoka (1992)
Kramer and Marder (1992)
Masek and Turcotte (1993)
Stark (1991)

Evolution of fluvially dissected terrain 2, 3 Rigon et al. (1994)
Stark (1994)

Increasing topographic relief 3 Phillips (1995b)
Scale-invariant topography 2, 3 Hallet (1990)

Turcotte (1990)

Notes: (1) Field or laboratory observations. (2) Analysis of map, digital elevation, or remotely sensed data. (3)
Numerical models.

1992; Newman et al. 1994). It is logical to suspect that chaotic behavior may exist in other
earth surface processes, and that chaotic flows and geophysical dynamics might leave
chaotic imprints on the landscape (Culling 1987, 1988a; Slingerland 1989; Malanson et al.
1990, 1992). Consequently, in recent years a number of studies have sought evidence of
chaotic behavior in geomorphic systems. Table 13.1 summarizes those studies, along with
work explicitly dealing with system stability, which have shown or found evidence of
instability and deterministic chaos in geomorphic systems.

Chaos and instability are not, of course, found in every search. For example, Wilcox et
al. (1991) found no evidence of deterministic chaos in complex snowmelt runoff time
series, and Zeng and Pielke (1993) have suggested, with respect to atmospheric dynamics,
that evidence of a chaotic attractor in time series can be misleading. Results are sometimes
equivocal, as well: Montgomery (1993) found evidence of chaotic behavior in a model of
river meander formation, but could neither support nor falsify those findings with field
data. Results are also process-, site-, or situation-specific in many cases. Phillips (1992b),
for instance, found that infiltration-excess runoff generation was likely to be chaotic, but
not saturation-excess runoff. Other analyses make it clear that while chaos may or does
occur under realistic situations in a particular geomorphic system, it does not occur at all
places or at all times (Phillips 1993e).

Table 13.2 lists the studies which have found evidence of self-organization in geo-
morphic systems. Again, this is not meant to suggest that all phenomena in Table 13.2 are
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always or invariably self-organizing and chaotic. Many, in fact, have both self-organizing
and nonself-organizing modes.

Emboldened by the evidence from the studies cited in Tables 13.1 and 13.2, let us
declare, for the sake of argument, that some geomorphic systems are chaotic under some
circumstances. So what?

PROBLEMS APPLYING NDS THEORY TO GEOMORPHOLOGY

Culling (1987, 1988a) and Malanson et al. (1990, 1992) held that chaos theory provides a
powerful pedagogic framework for geomorphology, but that its utility for problem-solving
is limited. This is because real landscapes nearly always exhibit some environmental
heterogeneity - stochastic complexity - in addition to any deterministic, chaotic,
complexity which may be present. It is extremely difficult to distinguish chaos from noise
when both are present, and more difficult still to isolate the two. Further, methods for
detecting and analyzing chaos in empirical data requires large data sets -5000 observations
is considered a small data set in the NDS literature, but many geomorphic data sets are far
smaller. Considerable methodological progress is being made in overcoming and
circumventing these problems, though they remain serious issues. But even if these
methodological hurdles are cleared, there are more fundamental difficulties in applying
NDS theory to geomorphology.

Abstract Concepts and Concrete Landscapes

NDS theory and methods often depend on phase portraits and trajectories, conceptually
and sometimes operationally. In the n-dimensional phase space defined by the n
components of the geomorphic system, the system state at any given time can be mapped
into the phase space. Over time, changes in system state are represented by a sequence of
points which define a trajectory. This poses few intrinsic problems for mathematical
models or rapidly varying phenomena. However, in most cases landscapes change too
slowly to allow a phase portrait to be constructed from empirical information - there are
simply too few points to be mapped into the phase space.

The geologic record may allow the identification of previous system states, and can
provide more points for the phase space. However, the record is incomplete, and (to put it
mildly) can be confusing. For instance, does a paleosol represent a single set of
environmental controls, or is it overprinted with evidence from several different
soil-forming events or episodes - i.e. how many system states does it reflect? The record is
also likely to be incomplete and biased. Coastal sedimentary sequences, for example, are
likely to preserve some evidence of system states associated with sea level transgression,
and little evidence of regression.

Deterministic chaos is characterized and defined on the basis of sensitivity to initial
conditions. In numerical models we know and can control variations in initial states. In
geomorphology initial states, even in a general sense, are often unknown. Minor variations
in initial conditions are not just unknown, but also unknowable.

It is unfortunate that much of the chaos literature (including, alas, some of my own
writings) has used the term sensitive dependence on initial conditions, rather than simply
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sensitivity to initial conditions. Dependence is correct insofar as mathematics goes: the
most minuscule variations in starting values produce quite different, and unique, values at
any given future time after the initial transients die out. However, this phrasing leads to
the misguided hope that in a chaotic system the initial state can be deduced from the
current state. If that were the case, what a boon it would be for paleoenvironmental
reconstructions! Rather, chaos implies the opposite, from the geoscientist's perspective -
nearly identical initial conditions, which differ in unmeasurable and geomorphically
insignificant ways, could produce quite different results in a chaotic earth surface system.
In this sense the latter exhibit sensitive independence of initial conditions.

Another problem arises from our field orientation. Even mathematical modellers
unfailingly present their results in the form of graphic depictions of landforms.
Geomorphologists invariably raise the question: Is chaos a property of geomorphic
systems, or merely a property of mathematical models of geomorphic systems? The
answer is that chaos is not strictly a mathematical artifact - of the 52 studies cited in
Tables 13.1 and 13.2, less than a fifth rely exclusively on numerical models or
mathematical arguments. Nevertheless, the question will continue to arise until we
develop: (1) more and better concrete, pedagogical examples of chaos in real landscapes,
and (2) geomorphic rather than mathematical concepts and definitions of complex
nonlinear behaviors.

Interpretations and Expectations

There has been much emphasis in the NDS literature, appropriately enough, on the
deterministic complexity in nonlinear systems. There are, clearly, important implications
regarding predictability, important precautions regarding numerical modelling, and
important opportunities to explain complex, irregular temporal and spatial patterns. Real
landscapes usually contain considerable quantities of both simplicity, regularity, and order
on the one hand and complexity, irregularity, and disorder on the other. Depending on
one's outlook, interests, or purposes, one or the other may be emphasized. For those whose
goals and inclinations favor the former, deterministic complexity can be quite troubling.

But irregularity and weirdness are only one side of the nonlinear coin. Beyond the order
and determinism inherent in nonlinear systems, many unstable, chaotic, and complex self-
organizing systems exhibit trends quite familiar to geomorphologists. The tendency of
perturbations to persist and grow, for example, has long been well known in the
development of rills, and the growth of dune blowouts and nivation hollows (for example).
Instability and chaos merely (in these cases) provide frameworks for making
generalizations about such phenomena and placing them in a broader context (Scheidegger
1983). The increasing divergence over time characteristic of unstable and chaotic systems
need not imply incomprehensible results at broader scales, either. With respect to
topographic evolution, increasing divergence in elevation simply implies an increase in
relief. The result may be quite irregular, fractal topography, but such trends are certainly
not unknown, rare, or particularly daunting to geomorphologists.

Because much work in chaos theory and nonlinear dynamics has dealt with physical
processes such as turbulent flows, process geomorphologists in particular may have
developed some unreasonable expectations that NDS theory should or could provide
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insight into process mechanics. This would be true only when NDS theory is applied to
process-mechanical systems. The advantages of NDS approaches - like those of systems
approaches in general - lie in holistic understanding. To the extent NDS theory has
advantages over reductionist approaches, it lies in understanding how the components of
geomorphic systems fit together, and the likely outcomes of a number of process-response
relationships operating simultaneously and sequentially. An understanding of mechanics,
or identification of specific process-response relationships, is more likely to be the starting
point for an NDS analysis than the outcome. Sometimes NDS theory, applied to broader-
scale systems, does indeed provide insight into specific geomorphic mechanisms, but it is
not reasonable to expect or demand that it routinely do so, or judge its value on that basis.
Likewise, one generally does not expect reductionist studies of process mechanics in
aeolian or fluvial saltation to explain the evolution of ergs or drainage basins.

Deterministic Uncertainty

Chaos means that observed stochasticity and randomness may be apparent, not real, i.e.
the complex patterns are completely deterministic even though they appear random. In
real landscapes, however, chaos may be apparent rather than real. Recalling the
relationship between entropy and chaos, the observed entropy of a spatial pattern of a
geomorphic phenomenon A, which has one of i = 1, 2, 3, . . ., n discrete occurrences at
each of N locations is

where fi is the number of locations where the ith outcomes of A occurs, and 1/x is a factor
by which the number of possible arrangements of A has been reduced by some underlying
control.  In a truly random arrangement, any outcomes of A can occur anywhere, so 0 < x
≤ 1. If the pattern of A were completely deterministic and nonchaotic, then Hobs(A) = 0.
Denoting the maximum possible entropy of the pattern of A (that associated with a purely
random arrangement) H(A),

Hobs(A) = H(A) + ln x. (4)

The underlying constraint x thus yields finite positive entropy, which is produced either by
deterministic chaos or by colored noise.

If x is known and measurable (for example, the effects of lithologic constraints on
channel networks), then Hobs(A) is colored noise. Gaining more information about x would
reduce uncertainty and increase predictability. If x is known but unmeasurable (for
example, effects of past bioturbations on sediment properties), x represents deterministic
uncertainty, because an underlying deterministic cause increases entropy, uncertainty, and
unpredictability. It is chaotic in the sense of a deterministic cause and an inability to
reduce uncertainty by deterministic means. In many cases, of course, x could represent
several factors, known and unknown; measurable and immeasurable.

The distinction between colored noise and chaos, then, may be a function of the extent
of knowledge about constraints of A, and the technology available to measure them.
Chaos, as well as randomness, can be apparent, and thus deterministic uncertainty is a
more appropriate term for real landscapes (McBratney 1992; Phillips 1994).

( ) )3()/!ln(/1obs i
n

fxNNAH Π=
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Deterministic uncertainty would seem to lead us back to the traditional reductionist
scientific dogma - that we can or could, ultimately explain everything if we just have more
and better measurements. The distinction is that while the deterministic uncertainty
concept allows that improved measurements might reduce uncertainty (consistent with the
traditional, reductionist view), it also recognizes the presence of complex, nonlinear
dynamics inherent to the system which can explain two phenomena which are not
otherwise explained:

1 . Variability which is far out of proportion with that of the environmental controls, i.e.
the growth rather than the mere presence or persistence of variations in initial
conditions or perturbations - for example, variations in final infiltration rates on runoff
plots many orders of magnitude greater than any variability in rainfall application rates
or soil hydrologic properties (Phillips 1992b).

2. Variability which increases over time with no corresponding increase in the variability
of the environmental controls - for example, increasing irregularity in the config-
uration of estuarine shorelines over a 40-year period (Phillips 1989).

Predictability and Explanation

It can be quite useful to know that a geomorphic system is potentially chaotic. Chaos
means long-term deterministic prediction is impossible, but also that short-term
deterministic prediction of even the most complicated patterns is possible, and that there is
some broad-scale order. Knowing a system is chaotic, we can focus efforts at those scales.
In between, we know we should use stochastic methods - which work equally well
whether the randomness is real or apparent - for prediction. Chaos is sometimes said to be
the death knell for reductionist approaches, as it implies irreducible complexity that is
immune to resolution via gathering more and more detailed data. An alternate view is that
chaos allows us to focus our reductionist studies on those phenomena (or scales) where
they will be most fruitful

Chaos also implies the presence of a strange attractor. This means, in principle, that
even a very complicated pattern arising from a system, with many apparent degrees of
freedom can be described on the basis of just a few variables. This is quite attractive, but
unfortunately chaos theory provides no way to tell which of the variables or degrees of
freedom are the few critical ones! But chaos also implies self-organization. Seeking and
finding the manifestations of self-organization can provide considerable insight into
geomorphic evolution (Hallet 1990).

The means to distinguish between chaos and stochasticity, to detect strange attractors,
and to provide evidence for self-organization are quite useful in the collective toolkit of
geomorphologists. These findings represent only a general step, however, toward
understanding landscape evolution, and explaining landforms and surface processes, and
process-response relationships.

In general, we can recognize four situations with respect to the utility of NDS theory in
explanation and prediction. First, in some situations NDS approaches are useless.
Generally, this applies to problems that are linear, or where systems approaches in general
are inappropriate. Second, NDS theory is sometimes redundant - it tells us things we
already knew or could obtain some other way. For example, many of the recent NDS-



DETERMINISTIC COMPLEXITY, EXPLANATION AND PREDICTABILITY 325

based analyses of fluvial network development (see Table 13.2) are raising the same
questions and yielding the same answers as earlier analyses based on topologic
randomness or least-work principles. A third situation is where NDS theory has
descriptive value, in that it accurately describes the behavior of geomorphic systems, and
allows an understanding or interpretation of that behavior not available otherwise. Finally,
the most desirable and useful situation is one in which NDS theory has explanatory value.
This is discussed in detail below.

EXPLANATORY VALUE

To be attractive as an explanation or potential source of explanations to empiricist geo-
morphologists, a construct must either:

• Explain observations not otherwise satisfactorily explained; or provide a plausible
explanation which either fits the observed facts better than, or fits the facts equally as
well as, and is simpler than, alternative explanations.

• Provide hypotheses about landscape evolution or the functioning of geomorphic
systems which are testable based on field observations, and which are unlikely to have
arisen otherwise.

Explanation manifests itself differently in the two dominant geomorphological para-
digms. In the historical paradigm, explanations should describe the origin of geomorphic
features, and postulate a plausible process or mechanism for their development. Tests are
based on comparisons between field observations and the implications of the proposed
explanations, and on attempts to falsify hypotheses. The latter are based on some notion of
determining what should be observed in the landscape or the stratigraphic record if the
NDS-generated hypothesis is false (to constitute strict falsification this should be more
rigorous than the exercise of finding field evidence consistent with the hypothesis). In the
process paradigm, explanations are called upon to identify processes or mechanisms
responsible for particular features or phenomena, or to describe process mechanics. Tests
are based on field or laboratory experiments.

The explanatory value of NDS is perhaps better suited to the historical paradigm,
simply because its questions are more likely to be holistic and less likely to be reductionist
than those of the process paradigm. Thus while the modern 'discovery' of chaos occurred
in the field of atmospheric dynamics, its explanatory value thus far is far greater in
paleoclimatology than in weather forecasting. This does not mean NDS theory has no
explanatory value in process geomorphology, however, as shown below.

Explaining Variability

Complexity and irregularity in the form of extensive and complicated spatial variability
over short distances and small areas are well known in geomorphology. This is often
conceptualized as local-scale heterogeneity overlaid on broad-scale order and/or as the
product of multiple controls over process-response relationships acting simultaneously
over a range of spatial and temporal scales (cf. Burrough 1983; Chase 1992; de Boer
1992). This is certainly the case in many situations. However, there are at least two types



326 SCIENTIFIC NATURE OF GEOMORPHOLOGY

of spatial complexity which are not satisfactorily explained by the environmental
heterogeneity and multiple-scale arguments: those where the spatial variability is
disproportionately high compared to the variability of controlling or influencing factors,
and those where the variability increases over time without any increase in the variability
of controlling factors.

For example, infiltration and percolation into homogeneous sand typically occur in the
form of a spatially complex pattern of 'fingered flow'. Despite the homogeneity of the
medium, and even with no measurable variation in moisture supply or application, a
complex pattern of wetting front depths, soil moisture content, and moisture flux rates
develops. Presumably, there are tiny, unnoticed, and unmeasurable variations within the
sand, or in moisture supplies at the surface. However, the variations in moisture fluxes and
storage are many orders of magnitude larger than any variability in hydrologic controls.
Selker et al. (1992) were able to explain these phenomena on the basis of the growth of
wetting front instabilities, using a model based on the Richards equation, and confirmed
with a series of experiments. In this case NDS theory provides a reasonable explanation,
within the process paradigm, where no other currently exists. Another example is Nahon's
(1991) study of complex self-organization in lateritic weathering, which identifies specific
geochemical processes responsible for the observed weathering features.

In the historical paradigm, there are questions where NDS-based explanations have
advantages over alternatives. Saltzman and Verbitsky's (1994) phase-space model of
ocean state, global ice, atmospheric CO2, and bedrock depression beneath ice sheets is one
example. Internal chaotic instabilities in the model provide a plausible explanation of
Pleistocene climate change that fits the δ18O record as well as competing explanations, and
is conceptually simpler. Other examples involve soil spatial variability in the absence of
observable variation in soil-forming factors (Phillips 1993b, c, d), and increasing
irregularity of eroding marsh shorelines over time (Phillips 1989, 1992a).

Producing Testable Hypotheses

NDS theory can, and does, produce hypotheses that particular geomorphic systems do, or
do not, exhibit chaos. These can then, sometimes, be tested using empirical data sets. This
is fine, as far as it goes, but provides little direct insight into how landscapes work.
Likewise, hypotheses that a geomorphic system will (or will not) produce complex,
irregular spatial or temporal patterns may be testable, but the outcomes provide only the
most general of insights. However, in some cases hypotheses of this general nature imply
specific mechanisms, or suggest specific, concrete modes of landscape evolution which
are, in turn, testable.

Werner and Fink (1994) developed a model of beach cusp formation based on complex,
self-organizing interactions between wave processes and beach morphology. The
alternative explanation of cusp formation involves edge waves. Because the competing
explanations are mutually exclusive, the Werner/Fink model results in a testable
hypothesis: the formation of beach cusps can be observed, along with the presence or
absence of edge waves (test results available to date are inconclusive). Determining the
extent to which beach cusp formation results from edge waves or wave-beach interactions
will provide considerable insight into the evolution and dynamics of beach forms and
processes.
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Ibanez et al. (1994) applied NDS concepts to the evolution of soil landscapes and
fluvially dissected terrain in Spain. This yielded the observation - which can be interpreted
as a hypothesis - that as fluvial dissection proceeds, there is increasing diversity of
landforms, soils, and ecosystems, thus greatly enlarging the state space of the earth surface
system as a whole. This is testable, at least in the aggregate and to a first approximation, by
comparing measures of landform, soil, and ecosystem diversity in basins of different stages
or degree of dissection. Results of the test would be quite useful in understanding the
relationship between soil landscape development and the evolution of ecological diversity.

SOIL LANDSCAPE EVOLUTION

I present here a case study of soil landscape evolution in the North Carolina coastal plain
to show how NDS approaches can provide testable hypotheses relevant to both historical
and process paradigms. The intimate relationships between pedological and
geomorphological evolution are well described elsewhere (Birkeland 1984; Retallack
1990; McFadden and Kneupfer 1990; Gerrard 1992). The landscape-scale implications of
chaotic pedogenesis and soil-landscape evolution have been discussed before (Arlinghaus
et al. 1992; Culling 1988b; Ibanez et al. 1990; Phillips 1993b, c). The intent here is to
show that an NDS-based analysis can generate testable hypotheses on specific
soil-geomorphic phenomena.

Textural Differentiation Model

On the uplands of the North Carolina coastal plain (Figure 13.1), the most important
factors defining the differences between soil types are the texture and thickness of A-, E-,
and B-horizons. In the unconsolidated coastal plain sediments, under the prevailing humid
subtropical climate, Ultisols are produced in all but the youngest sites, those subjected to
dominantly regressive pedogenesis, or nearly pure sands. Textural differentiation is
produced by chemical weathering and clay mineral synthesis in surficial (A- and
E-horizons) and B-horizons, and by translocation via chemical dissolution-precipitation
and lessivage. Differences in other soil properties, such as chemistry, structure, color, and
consistency, arise as secondary impacts of textural differentiation, due to differences in
drainage and degree of development, and in response to local variations in other
soil-forming factors.

A conceptual model of textural differentiation can be constructed to account for dif-
ferences in the texture and thickness of A- and E- versus B-horizons. Critical components
are the rate of clay synthesis in the A- and E-horizons, A, internal clay synthesis in the B-
horizon, B, the rate of eluvial loss from the surficial horizons, E, the rate of illuvial gain in
the B-horizon, I, and the rate of moisture flux Ω. Units of clay synthesis and translocations
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Figure 13.1 The North Carolina coastal plain. Triangles indicate sites of field soil geomorphology
investigations used to develop or test the textural differential model

have dimensions of MT-1. Moisture flux in this case is the transmissitivity of the soil
profile, with dimensions LT-1.

                                                                  A = cie-klA∆t                                                                     (5)

                                                                        E = Ωc2A ∆t                                                        (6)

                                                                        I = E                                                                   (7)

                                                               B = c3e-k 3 B∆t                                                      (8)

                                                                Ω = c4 -f (B ∆t + I∆t)                                           (9)

The c's are constants reflecting, respectively, the maximum A- and E-horizon clay mineral
synthesis rate as controlled by climate and geochemistry; the removal rate from surface
horizons associated with a given moisture flux; the maximum clay mineral synthesis rate in
the B-horizon; and the moisture flux rate in the unaltered soil. The k's are coefficients
describing, respectively, the decline in clay synthesis as clay accumulates in the surface
and B-horizons.

The equations reflect illuviation as a direct function of eluviation, clay accumulation in
the surface horizons as synthesis minus eluvial loss, and accumulation in the subsurface as
illuviation plus in situ synthesis. Eluvial loss from B-horizons occurs in the region, but is
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insignificant compared to the other processes. Weathering and clay synthesis rates slow
as clay accumulates, due to depletion of weatherable minerals, though it might be argued
for other situations that the increased water-holding capacity associated with
accumulation of fines would increase weathering rates.

Decline in clay synthesis is shown as a negative exponential function of clay
accumulation, in accordance with earlier models of feedback effects in weathering. The
moisture flux is shown as a generalized, unspecified negative function of subsoil clay
accumulation. In eastern North Carolina, hydraulic conductivities of argillic horizons are
typically half to less than a tenth of those in surface horizons. The specific form of these
feedback functions is not important in this context; only that they are indeed negative
functions.

The relationships between the major components of the system are shown in Table 13.3.
This interaction matrix gives only the positive, negative, or negligible (zero) influences of
A, B, E, I, and Ω on each other, as reflected in the equations. The signs of the matrix
elements are all that is necessary to determine whether there are any positive Lyapunov
exponents. This method can therefore be used when exact (or generally applicable)
relationships between system components cannot be specified, but the general nature of
their interactions can be. Also, results are not dependent on any particular parameter
values, or any particular form of the governing equations (Mendoza-Cabrales 1994;
Phillips 1992a; Scheidegger 1993; Slingerland 1981). Variables a and β are not included,
as they are linear combinations of other components. Links shown in the interaction
matrix - a linearized version of the highly nonlinear equation system - include only the
direct links - i.e. those that do not work through any other component.

The coefficients of the characteristic polynomial of the matrix can be computed based
on the feedback (F), where

                                                               Fk = Σ(-l)m+1L(m, k)                                                         (10)

where k is the level or order and L(m, k) signifies m disjunct loops of total length k. Disjunct
loops are sequences of aij (matrix elements) with no i or j in common. For example,
feedback at level four (the fourth coefficient in the polynomial) would include all
combinations of disjunct loops whose total length (number of components) is four. The

Table 13.3 Interaction matrix showing the positive, negative, and
negligible mutual influence in the soil textural differentiation
model (A, E, I, B, Ω), respectively, represent rates of A- and E-
horizon clay synthesis, eluviation of clay from surficial horizons,
illuviation in B-horizons, B-horizon clay synthesis, and moisture
flux

                   A       E      I      B                   Ω

 A              -a11               a12       0       0                     0
 E       0      0       a23       0                     0
 I       0                 0                   0                 0                                     -a35
 B       0      0       0     -a44                   -a45
Ω       0      a52       0       0                     0
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RHC criteria are that the system is stable (i.e. all eigenvalues have negative real parts and
all λ < 0 if and only if Fk < 0 for all k, and (for n = 5):

In the textural differentiation system all Fk < 0, and the second stability criterion is also
likely to be met. This implies that the system is stable to small perturbations and should
not behave chaotically. However, this stability is contingent upon all relationships
operating as shown in Table 13.3.

If the role of clay accumulation in moisture storage to promote chemical weathering is
stronger than the effects of mineral depletion, then equations (5) and (8) and the signs of
a11 and a44 change, and the system becomes unstable. This could occur in early stages of
weathering where the supply of weatherable minerals is not limiting, or where there is an
influx of new weatherable minerals (for example, via deposition).

There is also evidence that clay accumulation in the B-horizon does not necessarily
limit eluviation or moisture flux, despite the clearly lower hydraulic conductivities in
argillic horizons. The latter are typically on the order of 1.5 to 15 cm h-1 in coastal plain
Ultisols. While this can limit movement during storm runoff, it is unlikely to inhibit water
movement and eluviation over longer time scales. This would alter equation (9) and
interaction matrix elements a34 and a45, and results in instability.

Implications

There are two major implications with respect to processes. The NDS analysis shows that
two particular process mechanisms determine whether or not the system behaves chao-
tically. First, is the chemical weathering rate limited by the reaction rates or weatherable
minerals? Second, do the hydraulic conductivity contrasts between the illuvial and
overlying horizons limit eluviation (or the depth of illuviation)? These implications could
clearly be tested in the field, and results could be linked to related hypotheses involving
instability or spatial chaos-for example, where weathering is reaction-limited and depth of
illuviation is not inhibited by B-horizon development, the spatial variability of soil profile
morphologies and soil types in comparison to observable variation in controlling factors
should be greater than where weathering is mineral-limited and eluviation-illuviation is
inhibited. However, the process hypotheses do not need to be linked to NDS hypotheses to
be useful, as they have intrinsic significance for landscape evolution.

There is another major implication for soil landscape evolution. Where reaction rates
are limiting and/or clay accumulation does not inhibit eluviation, the textural
differentiation model is unstable and chaotic. If this is the case, then the spatial variability
of the soil cover, in terms of the presence, texture, and thickness of A-, E-, and B-horizons
in individual pedons, should increase over time. Soil cover on older soil landscapes should
be more variable than that on younger ones, even where climate, biotic effects, parent
material, and topography are very similar.

This hypothesis has already been tested in an area of the lower North Carolina coastal
plain where illuvial clay accumulation does not limit eluviation. The number of soil types,
at the series level, was compared at two otherwise identical sites on adjacent geomorphic
surfaces differing in age by about 150 000 years. The younger, late Pleistocene site had
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only one soil type while the older Pleistocene site had at least seven (Phillips 1993d). The
hypothesis was thus not rejected.

Given the fact that exponential divergence cannot last indefinitely, and the order and
self-organization which must emerge at some scale in a chaotic system, there should be
some broad-scale, regularities in the soil landscape, and a limit to the age of soil
landscapes where increasing divergence is observed. The former is at least intuitively
observed in the aggregate, coarse-scale predictability of the soil landscape model in the
coastal plain. The latter can be tested if longer chronosequences can be developed.

DISCUSSION AND CONCLUSIONS

It is now clear that geomorphic systems are often complex, nonlinear, dynamical systems.
That involves, in some cases, deterministic chaos and self-organization. However,
applications of NDS theory to geomorphology have been hampered by three major
problems:

1. Concepts and analytical techniques imported from mathematics and physics, where the
simple, abstract systems bear little resemblance to real landscapes;

2. A lack of field tests;
3. Limited ability to provide explanations of geomorphic processes or evolution.

The first problem is beginning to be solved by devising and adapting terminology and
methodology appropriate to the geosciences (Ibanez et al. 1994; McBratney 1992; Phillips
1994; Zeng and Pielke 1993). The second can also apparently be overcome, as NDS
theory has produced some field-testable hypotheses relevant to understanding surface
processes and landscape evolution. The third will be-and I argue, is being-overcome to the
extent NDS theory can explain geomorphic phenomena not otherwise explained, or
produce testable hypotheses unlikely to be produced otherwise. In addition to examples
from the literature, a case study shows NDS theory can be used to identify critical process
mechanisms in soil formation and to provide a plausible explanation for soil landscapes
where broad-scale regularities are overprinted with dramatic local-scale variability
disproportionate to any variability in controlling factors.

In general, while there are certainly inappropriate and unedifying applications of NDS
theory in geomorphology, it has been shown in at least some cases to provide explanation,
and to increase rather than decrease predictability. Whether that utility ultimately makes it
just one of many useful perspectives for the geomorphologist or a perspective of
preeminent importance remains to be seen. I believe that, whether or not
geomorphologists explicitly embrace NDS theory and methods, the discipline is likely to
continue to evolve:

• Away from efforts to identify single, inevitable ultimate steady-state equilibria, and
toward the recognition of inherently unstable and non-adjusting as well as steady-state
'climax' forms (see Renwich 1992).

•  Away from a linear cause-and-effect viewpoint whereby a given set of environmental
controls produces a given landscape, and toward the recognition of multiple landscape
responses and modes of adjustment.
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• Away from perspectives which emphasize either the regularities or complexities in the
landscape, and toward those which deal with both simultaneously, and which recognize
order and stability as an emergent property of spatial and temporal scale.

• Away from a view of unstable and nonsteady-state forms as anomalies or deviations
from the norm, and toward a view where these are seen as norms in their own right.

If these predictions are correct, then NDS theory is clearly an appropriate conceptual
framework, but not necessarily the only appropriate one.
      Nonlinear systems approaches have at least one thing in common with any other
conceptual framework, theory, or methodology: they do not, and cannot, answer or even
address every question asked by geomorphologists. Given the prominence of NDS theory
in science and its growing use in geomorphology, I argue that geomorphologists should
have at least a passing acquaintance with NDS concepts. But those who do not 'do' NDS
are not missing the boat, any more than those who do not do cosmogenic isotope dating,
geoarcheology, or microprocess mechanics (for example). Nonlinear dynamical systems is
unlikely to be the methodological or conceptual banner behind which all
geomorphologists can rally, or the rubric under which all of geomorphology can be
interpreted. It seems clear by now that there is probably no such banner or rubric (Rhoads
and Thorn 1993). Whether NDS theory lives up to its promise depends in large measure
on whether we promise, or expect, too much.
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